New Machine Learning Theory Raises Questions About the Very Nature of Science – SciTechDaily
A novel computer algorithm, or set of rules, that accurately predicts the orbits of planets in the solar system could be adapted to better predict and control the behavior of the plasma that fuels fusion facilities designed to harvest on Earth the fusion energy that powers the sun and stars.
The algorithm, devised by a scientist at the U.S. Department of Energys (DOE) Princeton Plasma Physics Laboratory (PPPL), applies machine learning, the form of artificial intelligence (AI) that learns from experience, to develop the predictions. Usually in physics, you make observations, create a theory based on those observations, and then use that theory to predict new observations, said PPPL physicist Hong Qin, author of a paper detailing the concept in Scientific Reports. What Im doing is replacing this process with a type of black box that can produce accurate predictions without using a traditional theory or law.
Qin (pronounced Chin) created a computer program into which he fed data from past observations of the orbits of Mercury, Venus, Earth, Mars, Jupiter, and the dwarf planet Ceres. This program, along with an additional program known as a serving algorithm, then made accurate predictions of the orbits of other planets in the solar system without using Newtons laws of motion and gravitation. Essentially, I bypassed all the fundamental ingredients of physics. I go directly from data to data, Qin said. There is no law of physics in the middle.
PPPL physicist Hong Qin in front of images of planetary orbits and computer code. Credit: Elle Starkman / PPPL Office of Communications
The program does not happen upon accurate predictions by accident. Hong taught the program the underlying principle used by nature to determine the dynamics of any physical system, said Joshua Burby, a physicist at the DOEs Los Alamos National Laboratory who earned his Ph.D. at Princeton under Qins mentorship. The payoff is that the network learns the laws of planetary motion after witnessing very few training examples. In other words, his code really learns the laws of physics.
Machine learning is what makes computer programs like Google Translate possible. Google Translate sifts through a vast amount of information to determine how frequently one word in one language has been translated into a word in the other language. In this way, the program can make an accurate translation without actually learning either language.
The process also appears in philosophical thought experiments like John Searles Chinese Room. In that scenario, a person who did not know Chinese could nevertheless translate a Chinese sentence into English or any other language by using a set of instructions, or rules, that would substitute for understanding. The thought experiment raises questions about what, at root, it means to understand anything at all, and whether understanding implies that something else is happening in the mind besides following rules.
Qin was inspired in part by Oxford philosopher Nick Bostroms philosophical thought experiment that the universe is a computer simulation. If that were true, then fundamental physical laws should reveal that the universe consists of individual chunks of space-time, like pixels in a video game. If we live in a simulation, our world has to be discrete, Qin said. The black box technique Qin devised does not require that physicists believe the simulation conjecture literally, though it builds on this idea to create a program that makes accurate physical predictions.
The resulting pixelated view of the world, akin to what is portrayed in the movie The Matrix, is known as a discrete field theory, which views the universe as composed of individual bits and differs from the theories that people normally create. While scientists typically devise overarching concepts of how the physical world behaves, computers just assemble a collection of data points.
Qin and Eric Palmerduca, a graduate student in the Princeton University Program in Plasma Physics, are now developing ways to use discrete field theories to predict the behavior of particles of plasma in fusion experiments conducted by scientists around the world. The most widely used fusion facilities are doughnut-shaped tokamaks that confine the plasma in powerful magnetic fields.
Fusion, the power that drives the sun and stars, combines light elements in the form of plasma the hot, charged state of matter composed of free electrons and atomic nuclei that represents 99% of the visible universe to generate massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.
In a magnetic fusion device, the dynamics of plasmas are complexand multi-scale, and the effective governing laws or computational models for a particular physical process that we are interested in are not always clear, Qin said. In these scenarios, we can apply the machine learning technique that I developed to create a discrete field theory and then apply this discrete field theory to understand and predict new experimental observations.
This process opens up questions about the nature of science itself. Dont scientists want to develop physics theories that explain the world, instead of simply amassing data? Arent theories fundamental to physics and necessary to explain and understand phenomena?
I would argue that the ultimate goal of any scientist is prediction, Qin said. You might not necessarily need a law. For example, if I can perfectly predict a planetary orbit, I dont need to know Newtons laws of gravitation and motion. You could argue that by doing so you would understand less than if you knew Newtons laws. In a sense, that is correct. But from a practical point of view, making accurate predictions is not doing anything less.
Machine learning could also open up possibilities for more research. It significantly broadens the scope of problems that you can tackle because all you need to get going is data, Palmerduca said.
The technique could also lead to the development of a traditional physical theory. While in some sense this method precludes the need of such a theory, it can also be viewed as a path toward one, Palmerduca said. When youre trying to deduce a theory, youd like to have as much data at your disposal as possible. If youre given some data, you can use machine learning to fill in gaps in that data or otherwise expand the data set.
Reference: Machine learning and serving of discrete field theories by Hong Qin, 9 November 2020, Scientific Reports.DOI: 10.1038/s41598-020-76301-0
Here is the original post:
New Machine Learning Theory Raises Questions About the Very Nature of Science - SciTechDaily
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]
- Machine learning analysis reveals tumor heterogeneity and stromal-immune niches in breast cancer - Nature - September 6th, 2025 [September 6th, 2025]
- Identification of Postoperative Weight Loss Trajectories and Development of a Machine Learning-Based Tool for Predicting Malnutrition in Gastric... - September 6th, 2025 [September 6th, 2025]
- The Relationship Between Number of Pregnancies and Serum 25-Hydroxyvitamin D Levels in Women with a Prior Pregnancy: A Cross - Sectional Analysis,... - September 6th, 2025 [September 6th, 2025]
- Tohoku University Researchers Use Machine Learning to Identify Factors Improving Nickel-Based Catalysts for CO Methanation - geneonline.com - September 6th, 2025 [September 6th, 2025]
- Combining machine learning predictions for Galaxy Payroll Group Limited - Quarterly Growth Report & AI Forecast Swing Trade Picks - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast CLSKW recovery - 2025 Breakouts & Breakdowns & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Granite Real Estate Investment Trust recovery - July 2025 Spike Watch & Growth Focused Stock Reports - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VERU recovery - July 2025 Intraday Action & AI Forecasted Entry/Exit Points - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VCI Global Limited recovery - Market Rally & Expert-Curated Trade Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for AutoNation Inc. - Weekly Trend Summary & Weekly Breakout Watchlists - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for PLXS - Options Play & Fast Gain Stock Trading Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Valens Semiconductor Ltd. recovery - July 2025 Action & Free Growth Oriented Trading Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Improve cost visibility of Machine Learning workloads on Amazon EKS with AWS Split Cost Allocation Data - Amazon Web Services - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast LFT.PRA recovery - Weekly Trade Recap & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast TEAM recovery - 2025 Pullback Review & Free Weekly Chart Analysis and Trade Guides - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for MSBIP - Weekly Profit Analysis & AI Powered Market Entry Strategies - Newser - September 5th, 2025 [September 5th, 2025]
- Revolutionizing Antibody Discovery with Machine Learning - BIOENGINEER.ORG - September 5th, 2025 [September 5th, 2025]