New AI Software Makes Us Happier by Analyzing Facing Expressions – Finance Magnates
What was in the past just a figment of the imagination of some of our most famous scientists and writers, machine learning Machine Learning Machine learning is defined as an application of artificial intelligence (AI) that looks to automatically learn and improve from experience without being explicitly programmed. Machine learning is a rapidly growing field that also focuses on the development of computer programs that can access data and use it learn for themselves.This has many potential benefits for most industries and sectors, including the financial services industry. Machine Learning ExplainedMachine learning can be explained through observational behavior. For example, the process of learning begins with observations or data.This includes examples and indirect experience or instruction to help detect patterns in data. In doing so, the goal is to make better decisions in the future based on the examples that are provided. In an ideal set of circumstances, computers learn automatically without human intervention or assistance and adjust actions accordingly.Machine learning can take two different form, i.e. supervised or unsupervised learning. Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. As such, the system is able to provide targets for any new input after sufficient levels of training. Learning algorithm can also compare its output to find errors in order to modify the model accordingly.By extension, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesnt figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data. Machine learning is defined as an application of artificial intelligence (AI) that looks to automatically learn and improve from experience without being explicitly programmed. Machine learning is a rapidly growing field that also focuses on the development of computer programs that can access data and use it learn for themselves.This has many potential benefits for most industries and sectors, including the financial services industry. Machine Learning ExplainedMachine learning can be explained through observational behavior. For example, the process of learning begins with observations or data.This includes examples and indirect experience or instruction to help detect patterns in data. In doing so, the goal is to make better decisions in the future based on the examples that are provided. In an ideal set of circumstances, computers learn automatically without human intervention or assistance and adjust actions accordingly.Machine learning can take two different form, i.e. supervised or unsupervised learning. Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. As such, the system is able to provide targets for any new input after sufficient levels of training. Learning algorithm can also compare its output to find errors in order to modify the model accordingly.By extension, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesnt figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data. Read this Term and AI have without a doubt taken root in almost everything smart.
AI is now being used to not only solve a wide range of modern and common problems, but also to assist in the wellbeing of the human mind.
Recently, developers have attempted to use AI to make us happier, but can these applications help us?
In the early 1930s, at the height of the Second World War, British cities were taking heavy casualties by constant German air raids. The Germans were so effective with blitzkrieg and with the secretary of their war plans that at one point during the war, they cornered the entire British army at the beaches of a French coastal town called Dunkirk.
Related content
The Germans were always a step ahead in their vital war plans largely because the allies had little intelligence on what their next advance would be. The Germans used a special code generated by a machine they had engineered called the Enigma to send messages secretly within the Wehrmacht and its occupied territories.
The allies biggest challenge was to crack this German code. To undertake this project, the UK Government Code and Cypher School (GC&CS), headquartered in Bletchley Park, appointed scientist Alan Turing as the man for the job.
Turing assembled a team that eventually created the Bombe machine which was used to decipher Enigmas messages. By speeding up the process of breaking the Enigma's encryption settings, staff could decode messages quickly and pass on the intelligence.
The Bombe and Enigma Machines laid the foundations for Machine Learning. They could converse with humans without humans knowing it was a machine. This imitation game is technically what we would label as intelligent.
In 1956, American computer scientist John McCarthy officially adopted the term Artificial Intelligence at the Dartmouth Conference.
Several Research centers were established in the United States aiming to explore the potential of AI. Herbert Simon and Allen Newell were pivotal in promoting AI as a technology that could transform the world.
In 1966, well before the launch of personal computers, Joseph Weizenbaum created Eliza at the MIT Artificial Intelligence Laboratory. This was the first-ever AI bot in the form of a chat-bot which are self-learning bots that are programmed with Natural Language Processing (NLP) and Machine Learning.
Today, AI is integrated in a variety of machines and softwares including AI bots.
However, a more sophisticated type of AI is emerging, labeled as "happiness tech" which assists people in becoming happier by detecting an individual's emotional state of being. But how does it work?
Since 2016, AI researcher Julian Jewel Jeyaraj has been working on the idea of utilizing AI to measure an individual's happiness. Jewel Jeyaraj developed JJAIBOT which is able to analyze the facial expressions of thousands of photos ( a social media profile for example) and forecast the emotional state of individuals within those photos. By analyzing the facial expressions, date, time, and location of those photos, the AI - which is trained in cognitive behavioral therapy methods to learn emotional profiles - is able to even measure the general happiness of an individual, or an entire demographic.
Based on the data it collects, the AI bot has the capabilities to provide personalized "happiness recommendations" to individuals such as meditation and breathing techniques, and other exercises to assist in their mental health.
So far the AI has been tested with more than 10,000 people in different environments.
Julian Jewel says AI bots are like personal assistants who remember our likes, dislikes and never tend to disappoint. Future JJAIBOTs can be assembled through stem cells in a petri dish that can produce living robots that can essentially reproduce. These bots can be programmed to perform useful functions such as finding cancer cells in human bodies or trapping harmful microplastics in the ocean protecting the environment
Utilizing this type of AI technology in the workplace can help businesses, too. Companies would be able to track what's called "psychological capital," and could significantly increase employee productivity for companies.
During lockdown, the world relied on technology to keep us connected to friends, family and our ability to work remotely.
The pandemic also made clear the importance of human connection which was heavily underscored.
We depend on "happiness technologies" to keep us healthy and happy and without applications such as video chats, entertainment, online conferencing, and software such as JJAIBOT, we would live in a world that was much more fragmented and psychologically difficult to bear.
During the pandemic, socialization has been crucial to many people's mental health. Interactive bots have been able to at least partially meet our need for intelligent connection.
A prime example of this is the CozmoBot, a child friendly human-AI interaction robot designed by AnthroTronix. CozmoBot is a robot that recognizes faces, learns names and uses facial expressions to convey different emotions and can be used as part of a play therapy program that promotes rehabilitation and development of disabled children. It has a constantly evolving set of skills and abilities based on human interactions. The CozmoBot system also automatically collects data for therapist evaluation.
Another example is JJAIBOTT which uses Visual & Acoustic Recognition Component (V-ARC) and advanced algorithms to detect images (brain scans, facial expressions, etc.) and text to detect human emotions. JJAIBOT also utilizes Predictive Analytics Analytics Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making.In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes.Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables.Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements.How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors.In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions.Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed.Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades.Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making.In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes.Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables.Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements.How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors.In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions.Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed.Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades.Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Read this Term Engine (PAE), which uses automated machine learning algorithms to data sets to create predictive models.
In these cases, there is no question that AI has the potential to tackle and solve complex problems, even as complex as helping our physiological state.
AI is a valuable tool to help increase a person's happiness by offering deep analysis, calculated solutions, and mimicking human-like connection.
This article was written by Khaled Mazeedi.
What was in the past just a figment of the imagination of some of our most famous scientists and writers, machine learning Machine Learning Machine learning is defined as an application of artificial intelligence (AI) that looks to automatically learn and improve from experience without being explicitly programmed. Machine learning is a rapidly growing field that also focuses on the development of computer programs that can access data and use it learn for themselves.This has many potential benefits for most industries and sectors, including the financial services industry. Machine Learning ExplainedMachine learning can be explained through observational behavior. For example, the process of learning begins with observations or data.This includes examples and indirect experience or instruction to help detect patterns in data. In doing so, the goal is to make better decisions in the future based on the examples that are provided. In an ideal set of circumstances, computers learn automatically without human intervention or assistance and adjust actions accordingly.Machine learning can take two different form, i.e. supervised or unsupervised learning. Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. As such, the system is able to provide targets for any new input after sufficient levels of training. Learning algorithm can also compare its output to find errors in order to modify the model accordingly.By extension, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesnt figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data. Machine learning is defined as an application of artificial intelligence (AI) that looks to automatically learn and improve from experience without being explicitly programmed. Machine learning is a rapidly growing field that also focuses on the development of computer programs that can access data and use it learn for themselves.This has many potential benefits for most industries and sectors, including the financial services industry. Machine Learning ExplainedMachine learning can be explained through observational behavior. For example, the process of learning begins with observations or data.This includes examples and indirect experience or instruction to help detect patterns in data. In doing so, the goal is to make better decisions in the future based on the examples that are provided. In an ideal set of circumstances, computers learn automatically without human intervention or assistance and adjust actions accordingly.Machine learning can take two different form, i.e. supervised or unsupervised learning. Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. As such, the system is able to provide targets for any new input after sufficient levels of training. Learning algorithm can also compare its output to find errors in order to modify the model accordingly.By extension, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesnt figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data. Read this Term and AI have without a doubt taken root in almost everything smart.
AI is now being used to not only solve a wide range of modern and common problems, but also to assist in the wellbeing of the human mind.
Recently, developers have attempted to use AI to make us happier, but can these applications help us?
In the early 1930s, at the height of the Second World War, British cities were taking heavy casualties by constant German air raids. The Germans were so effective with blitzkrieg and with the secretary of their war plans that at one point during the war, they cornered the entire British army at the beaches of a French coastal town called Dunkirk.
Related content
The Germans were always a step ahead in their vital war plans largely because the allies had little intelligence on what their next advance would be. The Germans used a special code generated by a machine they had engineered called the Enigma to send messages secretly within the Wehrmacht and its occupied territories.
The allies biggest challenge was to crack this German code. To undertake this project, the UK Government Code and Cypher School (GC&CS), headquartered in Bletchley Park, appointed scientist Alan Turing as the man for the job.
Turing assembled a team that eventually created the Bombe machine which was used to decipher Enigmas messages. By speeding up the process of breaking the Enigma's encryption settings, staff could decode messages quickly and pass on the intelligence.
The Bombe and Enigma Machines laid the foundations for Machine Learning. They could converse with humans without humans knowing it was a machine. This imitation game is technically what we would label as intelligent.
In 1956, American computer scientist John McCarthy officially adopted the term Artificial Intelligence at the Dartmouth Conference.
Several Research centers were established in the United States aiming to explore the potential of AI. Herbert Simon and Allen Newell were pivotal in promoting AI as a technology that could transform the world.
In 1966, well before the launch of personal computers, Joseph Weizenbaum created Eliza at the MIT Artificial Intelligence Laboratory. This was the first-ever AI bot in the form of a chat-bot which are self-learning bots that are programmed with Natural Language Processing (NLP) and Machine Learning.
Today, AI is integrated in a variety of machines and softwares including AI bots.
However, a more sophisticated type of AI is emerging, labeled as "happiness tech" which assists people in becoming happier by detecting an individual's emotional state of being. But how does it work?
Since 2016, AI researcher Julian Jewel Jeyaraj has been working on the idea of utilizing AI to measure an individual's happiness. Jewel Jeyaraj developed JJAIBOT which is able to analyze the facial expressions of thousands of photos ( a social media profile for example) and forecast the emotional state of individuals within those photos. By analyzing the facial expressions, date, time, and location of those photos, the AI - which is trained in cognitive behavioral therapy methods to learn emotional profiles - is able to even measure the general happiness of an individual, or an entire demographic.
Based on the data it collects, the AI bot has the capabilities to provide personalized "happiness recommendations" to individuals such as meditation and breathing techniques, and other exercises to assist in their mental health.
So far the AI has been tested with more than 10,000 people in different environments.
Julian Jewel says AI bots are like personal assistants who remember our likes, dislikes and never tend to disappoint. Future JJAIBOTs can be assembled through stem cells in a petri dish that can produce living robots that can essentially reproduce. These bots can be programmed to perform useful functions such as finding cancer cells in human bodies or trapping harmful microplastics in the ocean protecting the environment
Utilizing this type of AI technology in the workplace can help businesses, too. Companies would be able to track what's called "psychological capital," and could significantly increase employee productivity for companies.
During lockdown, the world relied on technology to keep us connected to friends, family and our ability to work remotely.
The pandemic also made clear the importance of human connection which was heavily underscored.
We depend on "happiness technologies" to keep us healthy and happy and without applications such as video chats, entertainment, online conferencing, and software such as JJAIBOT, we would live in a world that was much more fragmented and psychologically difficult to bear.
During the pandemic, socialization has been crucial to many people's mental health. Interactive bots have been able to at least partially meet our need for intelligent connection.
A prime example of this is the CozmoBot, a child friendly human-AI interaction robot designed by AnthroTronix. CozmoBot is a robot that recognizes faces, learns names and uses facial expressions to convey different emotions and can be used as part of a play therapy program that promotes rehabilitation and development of disabled children. It has a constantly evolving set of skills and abilities based on human interactions. The CozmoBot system also automatically collects data for therapist evaluation.
Another example is JJAIBOTT which uses Visual & Acoustic Recognition Component (V-ARC) and advanced algorithms to detect images (brain scans, facial expressions, etc.) and text to detect human emotions. JJAIBOT also utilizes Predictive Analytics Analytics Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making.In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes.Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables.Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements.How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors.In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions.Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed.Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades.Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making.In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes.Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables.Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements.How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors.In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions.Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed.Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades.Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Read this Term Engine (PAE), which uses automated machine learning algorithms to data sets to create predictive models.
In these cases, there is no question that AI has the potential to tackle and solve complex problems, even as complex as helping our physiological state.
AI is a valuable tool to help increase a person's happiness by offering deep analysis, calculated solutions, and mimicking human-like connection.
This article was written by Khaled Mazeedi.
See the original post here:
New AI Software Makes Us Happier by Analyzing Facing Expressions - Finance Magnates
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]