New AI Software Makes Us Happier by Analyzing Facing Expressions – Finance Magnates
What was in the past just a figment of the imagination of some of our most famous scientists and writers, machine learning Machine Learning Machine learning is defined as an application of artificial intelligence (AI) that looks to automatically learn and improve from experience without being explicitly programmed. Machine learning is a rapidly growing field that also focuses on the development of computer programs that can access data and use it learn for themselves.This has many potential benefits for most industries and sectors, including the financial services industry. Machine Learning ExplainedMachine learning can be explained through observational behavior. For example, the process of learning begins with observations or data.This includes examples and indirect experience or instruction to help detect patterns in data. In doing so, the goal is to make better decisions in the future based on the examples that are provided. In an ideal set of circumstances, computers learn automatically without human intervention or assistance and adjust actions accordingly.Machine learning can take two different form, i.e. supervised or unsupervised learning. Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. As such, the system is able to provide targets for any new input after sufficient levels of training. Learning algorithm can also compare its output to find errors in order to modify the model accordingly.By extension, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesnt figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data. Machine learning is defined as an application of artificial intelligence (AI) that looks to automatically learn and improve from experience without being explicitly programmed. Machine learning is a rapidly growing field that also focuses on the development of computer programs that can access data and use it learn for themselves.This has many potential benefits for most industries and sectors, including the financial services industry. Machine Learning ExplainedMachine learning can be explained through observational behavior. For example, the process of learning begins with observations or data.This includes examples and indirect experience or instruction to help detect patterns in data. In doing so, the goal is to make better decisions in the future based on the examples that are provided. In an ideal set of circumstances, computers learn automatically without human intervention or assistance and adjust actions accordingly.Machine learning can take two different form, i.e. supervised or unsupervised learning. Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. As such, the system is able to provide targets for any new input after sufficient levels of training. Learning algorithm can also compare its output to find errors in order to modify the model accordingly.By extension, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesnt figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data. Read this Term and AI have without a doubt taken root in almost everything smart.
AI is now being used to not only solve a wide range of modern and common problems, but also to assist in the wellbeing of the human mind.
Recently, developers have attempted to use AI to make us happier, but can these applications help us?
In the early 1930s, at the height of the Second World War, British cities were taking heavy casualties by constant German air raids. The Germans were so effective with blitzkrieg and with the secretary of their war plans that at one point during the war, they cornered the entire British army at the beaches of a French coastal town called Dunkirk.
Related content
The Germans were always a step ahead in their vital war plans largely because the allies had little intelligence on what their next advance would be. The Germans used a special code generated by a machine they had engineered called the Enigma to send messages secretly within the Wehrmacht and its occupied territories.
The allies biggest challenge was to crack this German code. To undertake this project, the UK Government Code and Cypher School (GC&CS), headquartered in Bletchley Park, appointed scientist Alan Turing as the man for the job.
Turing assembled a team that eventually created the Bombe machine which was used to decipher Enigmas messages. By speeding up the process of breaking the Enigma's encryption settings, staff could decode messages quickly and pass on the intelligence.
The Bombe and Enigma Machines laid the foundations for Machine Learning. They could converse with humans without humans knowing it was a machine. This imitation game is technically what we would label as intelligent.
In 1956, American computer scientist John McCarthy officially adopted the term Artificial Intelligence at the Dartmouth Conference.
Several Research centers were established in the United States aiming to explore the potential of AI. Herbert Simon and Allen Newell were pivotal in promoting AI as a technology that could transform the world.
In 1966, well before the launch of personal computers, Joseph Weizenbaum created Eliza at the MIT Artificial Intelligence Laboratory. This was the first-ever AI bot in the form of a chat-bot which are self-learning bots that are programmed with Natural Language Processing (NLP) and Machine Learning.
Today, AI is integrated in a variety of machines and softwares including AI bots.
However, a more sophisticated type of AI is emerging, labeled as "happiness tech" which assists people in becoming happier by detecting an individual's emotional state of being. But how does it work?
Since 2016, AI researcher Julian Jewel Jeyaraj has been working on the idea of utilizing AI to measure an individual's happiness. Jewel Jeyaraj developed JJAIBOT which is able to analyze the facial expressions of thousands of photos ( a social media profile for example) and forecast the emotional state of individuals within those photos. By analyzing the facial expressions, date, time, and location of those photos, the AI - which is trained in cognitive behavioral therapy methods to learn emotional profiles - is able to even measure the general happiness of an individual, or an entire demographic.
Based on the data it collects, the AI bot has the capabilities to provide personalized "happiness recommendations" to individuals such as meditation and breathing techniques, and other exercises to assist in their mental health.
So far the AI has been tested with more than 10,000 people in different environments.
Julian Jewel says AI bots are like personal assistants who remember our likes, dislikes and never tend to disappoint. Future JJAIBOTs can be assembled through stem cells in a petri dish that can produce living robots that can essentially reproduce. These bots can be programmed to perform useful functions such as finding cancer cells in human bodies or trapping harmful microplastics in the ocean protecting the environment
Utilizing this type of AI technology in the workplace can help businesses, too. Companies would be able to track what's called "psychological capital," and could significantly increase employee productivity for companies.
During lockdown, the world relied on technology to keep us connected to friends, family and our ability to work remotely.
The pandemic also made clear the importance of human connection which was heavily underscored.
We depend on "happiness technologies" to keep us healthy and happy and without applications such as video chats, entertainment, online conferencing, and software such as JJAIBOT, we would live in a world that was much more fragmented and psychologically difficult to bear.
During the pandemic, socialization has been crucial to many people's mental health. Interactive bots have been able to at least partially meet our need for intelligent connection.
A prime example of this is the CozmoBot, a child friendly human-AI interaction robot designed by AnthroTronix. CozmoBot is a robot that recognizes faces, learns names and uses facial expressions to convey different emotions and can be used as part of a play therapy program that promotes rehabilitation and development of disabled children. It has a constantly evolving set of skills and abilities based on human interactions. The CozmoBot system also automatically collects data for therapist evaluation.
Another example is JJAIBOTT which uses Visual & Acoustic Recognition Component (V-ARC) and advanced algorithms to detect images (brain scans, facial expressions, etc.) and text to detect human emotions. JJAIBOT also utilizes Predictive Analytics Analytics Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making.In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes.Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables.Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements.How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors.In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions.Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed.Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades.Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making.In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes.Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables.Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements.How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors.In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions.Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed.Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades.Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Read this Term Engine (PAE), which uses automated machine learning algorithms to data sets to create predictive models.
In these cases, there is no question that AI has the potential to tackle and solve complex problems, even as complex as helping our physiological state.
AI is a valuable tool to help increase a person's happiness by offering deep analysis, calculated solutions, and mimicking human-like connection.
This article was written by Khaled Mazeedi.
What was in the past just a figment of the imagination of some of our most famous scientists and writers, machine learning Machine Learning Machine learning is defined as an application of artificial intelligence (AI) that looks to automatically learn and improve from experience without being explicitly programmed. Machine learning is a rapidly growing field that also focuses on the development of computer programs that can access data and use it learn for themselves.This has many potential benefits for most industries and sectors, including the financial services industry. Machine Learning ExplainedMachine learning can be explained through observational behavior. For example, the process of learning begins with observations or data.This includes examples and indirect experience or instruction to help detect patterns in data. In doing so, the goal is to make better decisions in the future based on the examples that are provided. In an ideal set of circumstances, computers learn automatically without human intervention or assistance and adjust actions accordingly.Machine learning can take two different form, i.e. supervised or unsupervised learning. Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. As such, the system is able to provide targets for any new input after sufficient levels of training. Learning algorithm can also compare its output to find errors in order to modify the model accordingly.By extension, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesnt figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data. Machine learning is defined as an application of artificial intelligence (AI) that looks to automatically learn and improve from experience without being explicitly programmed. Machine learning is a rapidly growing field that also focuses on the development of computer programs that can access data and use it learn for themselves.This has many potential benefits for most industries and sectors, including the financial services industry. Machine Learning ExplainedMachine learning can be explained through observational behavior. For example, the process of learning begins with observations or data.This includes examples and indirect experience or instruction to help detect patterns in data. In doing so, the goal is to make better decisions in the future based on the examples that are provided. In an ideal set of circumstances, computers learn automatically without human intervention or assistance and adjust actions accordingly.Machine learning can take two different form, i.e. supervised or unsupervised learning. Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. As such, the system is able to provide targets for any new input after sufficient levels of training. Learning algorithm can also compare its output to find errors in order to modify the model accordingly.By extension, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesnt figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data. Read this Term and AI have without a doubt taken root in almost everything smart.
AI is now being used to not only solve a wide range of modern and common problems, but also to assist in the wellbeing of the human mind.
Recently, developers have attempted to use AI to make us happier, but can these applications help us?
In the early 1930s, at the height of the Second World War, British cities were taking heavy casualties by constant German air raids. The Germans were so effective with blitzkrieg and with the secretary of their war plans that at one point during the war, they cornered the entire British army at the beaches of a French coastal town called Dunkirk.
Related content
The Germans were always a step ahead in their vital war plans largely because the allies had little intelligence on what their next advance would be. The Germans used a special code generated by a machine they had engineered called the Enigma to send messages secretly within the Wehrmacht and its occupied territories.
The allies biggest challenge was to crack this German code. To undertake this project, the UK Government Code and Cypher School (GC&CS), headquartered in Bletchley Park, appointed scientist Alan Turing as the man for the job.
Turing assembled a team that eventually created the Bombe machine which was used to decipher Enigmas messages. By speeding up the process of breaking the Enigma's encryption settings, staff could decode messages quickly and pass on the intelligence.
The Bombe and Enigma Machines laid the foundations for Machine Learning. They could converse with humans without humans knowing it was a machine. This imitation game is technically what we would label as intelligent.
In 1956, American computer scientist John McCarthy officially adopted the term Artificial Intelligence at the Dartmouth Conference.
Several Research centers were established in the United States aiming to explore the potential of AI. Herbert Simon and Allen Newell were pivotal in promoting AI as a technology that could transform the world.
In 1966, well before the launch of personal computers, Joseph Weizenbaum created Eliza at the MIT Artificial Intelligence Laboratory. This was the first-ever AI bot in the form of a chat-bot which are self-learning bots that are programmed with Natural Language Processing (NLP) and Machine Learning.
Today, AI is integrated in a variety of machines and softwares including AI bots.
However, a more sophisticated type of AI is emerging, labeled as "happiness tech" which assists people in becoming happier by detecting an individual's emotional state of being. But how does it work?
Since 2016, AI researcher Julian Jewel Jeyaraj has been working on the idea of utilizing AI to measure an individual's happiness. Jewel Jeyaraj developed JJAIBOT which is able to analyze the facial expressions of thousands of photos ( a social media profile for example) and forecast the emotional state of individuals within those photos. By analyzing the facial expressions, date, time, and location of those photos, the AI - which is trained in cognitive behavioral therapy methods to learn emotional profiles - is able to even measure the general happiness of an individual, or an entire demographic.
Based on the data it collects, the AI bot has the capabilities to provide personalized "happiness recommendations" to individuals such as meditation and breathing techniques, and other exercises to assist in their mental health.
So far the AI has been tested with more than 10,000 people in different environments.
Julian Jewel says AI bots are like personal assistants who remember our likes, dislikes and never tend to disappoint. Future JJAIBOTs can be assembled through stem cells in a petri dish that can produce living robots that can essentially reproduce. These bots can be programmed to perform useful functions such as finding cancer cells in human bodies or trapping harmful microplastics in the ocean protecting the environment
Utilizing this type of AI technology in the workplace can help businesses, too. Companies would be able to track what's called "psychological capital," and could significantly increase employee productivity for companies.
During lockdown, the world relied on technology to keep us connected to friends, family and our ability to work remotely.
The pandemic also made clear the importance of human connection which was heavily underscored.
We depend on "happiness technologies" to keep us healthy and happy and without applications such as video chats, entertainment, online conferencing, and software such as JJAIBOT, we would live in a world that was much more fragmented and psychologically difficult to bear.
During the pandemic, socialization has been crucial to many people's mental health. Interactive bots have been able to at least partially meet our need for intelligent connection.
A prime example of this is the CozmoBot, a child friendly human-AI interaction robot designed by AnthroTronix. CozmoBot is a robot that recognizes faces, learns names and uses facial expressions to convey different emotions and can be used as part of a play therapy program that promotes rehabilitation and development of disabled children. It has a constantly evolving set of skills and abilities based on human interactions. The CozmoBot system also automatically collects data for therapist evaluation.
Another example is JJAIBOTT which uses Visual & Acoustic Recognition Component (V-ARC) and advanced algorithms to detect images (brain scans, facial expressions, etc.) and text to detect human emotions. JJAIBOT also utilizes Predictive Analytics Analytics Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making.In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes.Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables.Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements.How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors.In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions.Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed.Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades.Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making.In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes.Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables.Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements.How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors.In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions.Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed.Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades.Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Read this Term Engine (PAE), which uses automated machine learning algorithms to data sets to create predictive models.
In these cases, there is no question that AI has the potential to tackle and solve complex problems, even as complex as helping our physiological state.
AI is a valuable tool to help increase a person's happiness by offering deep analysis, calculated solutions, and mimicking human-like connection.
This article was written by Khaled Mazeedi.
See the original post here:
New AI Software Makes Us Happier by Analyzing Facing Expressions - Finance Magnates
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]