Medical content creation in the age of generative AI | Amazon Web Services – AWS Blog
Generative AI and transformer-based large language models (LLMs) have been in the top headlines recently. These models demonstrate impressive performance in question answering, text summarization, code, and text generation. Today, LLMs are being used in real settings by companies, including the heavily-regulated healthcare and life sciences industry (HCLS). The use cases can range from medical information extraction and clinical notes summarization to marketing content generation and medical-legal review automation (MLR process). In this post, we explore how LLMs can be used to design marketing content for disease awareness.
Marketing content is a key component in the communication strategy of HCLS companies. Its also a highly non-trivial balance exercise, because the technical content should be as accurate and precise as possible, yet engaging and empowering for the target audience. The main goal of the marketing content is to raise awareness about certain health conditions and disseminate knowledge of possible therapies among patients and healthcare providers. By accessing up-to-date and accurate information, healthcare providers can adapt their patients treatment in a more informed and knowledgeable way. However, medical content being highly sensitive, the generation process can be relatively slow (from days to weeks), and may go through numerous peer-review cycles, with thorough regulatory compliance and evaluation protocols.
Could LLMs, with their advanced text generation capabilities, help streamline this process by assisting brand managers and medical experts in their generation and review process?
To answer this question, the AWS Generative AI Innovation Center recently developed an AI assistant for medical content generation. The system is built upon Amazon Bedrock and leverages LLM capabilities to generate curated medical content for disease awareness. With this AI assistant, we can effectively reduce the overall generation time from weeks to hours, while giving the subject matter experts (SMEs) more control over the generation process. This is accomplished through anautomatedrevisionfunctionality, which allows the user to interact and send instructions and comments directly to the LLM via an interactive feedback loop. This is especially important since the revision of content is usually the main bottleneck in the process.
Since every piece of medical information can profoundly impact the well-being of patients, medical content generation comes with additional requirements and hinges upon the contents accuracy and precision. For this reason, our system has been augmented with additional guardrails for fact-checking and rules evaluation. The goal of these modules is to assess the factuality of the generated text and its alignment with pre-specified rules and regulations. With these additional features, you have more transparency and control over the underlying generative logic of the LLM.
This post walks you through the implementation details and design choices, focusing primarily on thecontent generationandrevision modules. Fact-checking and rules evaluation require special coverage and will be discussed in an upcoming post.
Image1:High-level overview of the AI-assistant and its different components
The overall architecture and the main steps in the content creation process are illustrated inImage 2.The solution has been designed using the following services:
Image 2: Content generation steps
The workflow is as follows:
To generate accurate medical content, the LLM is provided with a set of curated scientific data related to the disease in question, e.g. medical journals, articles, websites, etc. These articles are chosen by brand managers, medical experts and other SMEs with adequate medical expertise.
The input also consists of a brief, which describesthe general requirements and rules the generated content should adhere to (tone, style, target audience, number of words, etc.). In the traditional marketing content generation process, this brief is usually sent to content creation agencies.
It is also possible to integrate more elaborate rules or regulations, such as the HIPAA privacy guidelines for theprotection of health information privacy and security. Moreover, these rules can either be general and universally applicable or they can be more specific to certain cases. For example, some regulatory requirements may apply to some markets/regions or a particular disease. Our generative system allows a high degree of personalization so you can easily tailor and specialize the content to new settings, by simply adjusting the input data.
The content should be carefully adapted to the target audience, either patients or healthcare professionals. Indeed, the tone, style, and scientific complexity should be chosen depending on the readers familiarity with medical concepts.The content personalization is incredibly important for HCLS companies with a large geographical footprint, as it enables synergies and yields more efficiencies across regional teams.
From a system design perspective, we may need to process a large number of curated articles and scientific journals. This is especially true if the disease in question requires sophisticated medical knowledge or relies on more recent publications. Moreover, medical references contain a variety of information, structured in either plain text or more complex images, with embedded annotations and tables. To scale the system, it is important to seamlessly parse, extract, and store this information. For this purpose, we use Amazon Textract, a machine learning (ML) service for entity recognition and extraction.
Once the input data is processed, it is sent to the LLM as contextual information through API calls. With a context window as large as 200K tokens for Anthropic Claude 3, we can choose to either use the original scientific corpus, hence improving the quality of the generated content (though at the price of increased latency), or summarize the scientific references before using them in the generative pipeline.
Medical reference summarization is an essential step in the overall performance optimization and is achieved by leveraging LLM summarization capabilities. We use prompt engineering to send our summarization instructions to the LLM. Importantly, when performed, summarization should preserve as much articles metadata as possible, such as the title, authors, date, etc.
Image 3: A simplified version of the summarization prompt
To start the generative pipeline, the user can upload their input data to the UI. This will trigger the Textract and optionally, the summarization Lambda functions, which, upon completion, will write the processed data to an S3 bucket. Any subsequent Lambda function can read its input data directly from S3. By reading data from S3, we avoid throttling issues usually encountered with Websockets when dealing with large payloads.
Image 4: A high-level schematic of the content generation pipeline
Our solution relies primarily on prompt engineering to interact with Bedrock LLMs. All the inputs (articles, briefs and rules) are provided as parameters to the LLM via a LangChain PrompteTemplate object. We can guide the LLM further with few-shot examples illustrating, for instance, the citation styles. Fine-tuning in particular, Parameter-Efficient Fine-Tuning techniques can specialize the LLM further to the medical knowledge and will be explored at a later stage.
Image 5: A simplified schematic of the content generation prompt
Our pipeline is multilingual in the sense it can generate content in different languages. Claude 3, for example, has been trained on dozens of different languages besides English and can translate content between them. However, we recognize that in some cases, the complexity of the target language may require a specialized tool, in which case, we may resort to an additional translation step using Amazon Translate.
Image 6: Animation showing the generation of an article on Ehlers-Danlos syndrome, its causes, symptoms, and complications
Revision is an important capability in our solution because it enables you to further tune the generated content by iteratively prompting the LLM with feedback. Since the solution has been designed primarily as an assistant, these feedback loops allow our tool to seamlessly integrate with existing processes, hence effectively assisting SMEs in the design of accurate medical content. The user can, for instance, enforce a rule that has not been perfectly applied by the LLM in a previous version, or simply improve the clarity and accuracy of some sections. The revision can be applied to the whole text. Alternatively, the user can choose to correct individual paragraphs. In both cases, the revised version and the feedback are appended to a new prompt and sent to the LLM for processing.
Image 7: A simplified version of the content revision prompt
Upon submission of the instructions to the LLM, a Lambda function triggers a new content generation process with the updated prompt. To preserve the overall syntactic coherence, it is preferable to re-generate the whole article, keeping the other paragraphs untouched. However, one can improve the process by re-generating only those sections for which feedback has been provided. In this case, proper attention should be paid to the consistency of the text. This revision process can be applied recursively, by improving upon the previous versions, until the content is deemed satisfactory by the user.
Image 8: Animation showing the revision of the Ehlers-Danlos article. The user can ask, for example, for additional information
With the recent improvements in the quality of LLM-generated text, generative AI has become a transformative technology with the potential to streamline and optimize a wide range of processes and businesses.
Medical content generation for disease awareness is a key illustration of how LLMs can be leveraged to generate curated and high-quality marketing content in hours instead of weeks, hence yielding a substantial operational improvement andenabling more synergies between regional teams. Through its revision feature, our solution canbe seamlessly integrated with existing traditional processes, making it a genuine assistant tool empowering medical experts and brand managers.
Marketing content for disease awareness is also a landmark example of a highly regulated use case, where precision and accuracy of the generated content are critically important. To enable SMEs to detect and correct any possible hallucination and erroneous statements, we designed a factuality checking module with the purpose of detecting potential misalignment in the generated text with respect to source references.
Furthermore, our rule evaluation feature can help SMEs with the MLR process by automatically highlighting any inadequate implementation of rules or regulations. With these complementary guardrails, we ensure both scalability and robustness of our generative pipeline, and consequently, the safe and responsible deployment of AI in industrial and real-world settings.
Sarah Boufelja Y. is a Sr. Data Scientist with 8+ years of experience in Data Science and Machine Learning. In her role at the GenAII Center, she worked with key stakeholders to address their Business problems using the tools of machine learning and generative AI. Her expertise lies at the intersection of Machine Learning, Probability Theory and Optimal Transport.
Liza (Elizaveta) Zinovyeva is an Applied Scientist at AWS Generative AI Innovation Center and is based in Berlin. She helps customers across different industries to integrate Generative AI into their existing applications and workflows. She is passionate about AI/ML, finance and software security topics. In her spare time, she enjoys spending time with her family, sports, learning new technologies, and table quizzes.
Nikita Kozodoi is an Applied Scientist at the AWS Generative AI Innovation Center, where he builds and advances generative AI and ML solutions to solve real-world business problems for customers across industries. In his spare time, he loves playing beach volleyball.
Marion Eigneris a Generative AI Strategist who has led the launch of multiple Generative AI solutions. With expertise across enterprise transformation and product innovation, she specializes in empowering businesses to rapidly prototype, launch, and scale new products and services leveraging Generative AI.
Nuno Castro is a Sr. Applied Science Manager at AWS Generative AI Innovation Center. He leads Generative AI customer engagements, helping AWS customers find the most impactful use case from ideation, prototype through to production. Hes has 17 years experience in the field in industries such as finance, manufacturing, and travel, leading ML teams for 10 years.
Aiham Taleb, PhD, is an Applied Scientist at the Generative AI Innovation Center, working directly with AWS enterprise customers to leverage Gen AI across several high-impact use cases. Aiham has a PhD in unsupervised representation learning, and has industry experience that spans across various machine learning applications, including computer vision, natural language processing, and medical imaging.
See more here:
Medical content creation in the age of generative AI | Amazon Web Services - AWS Blog
- Google is experimenting with machine learning-powered age-estimation tech in the US - TechCrunch - August 1st, 2025 [August 1st, 2025]
- Google Will Use Machine Learning to Estimate Users Age and Block Them From Restricted Content and Ads - Adweek - August 1st, 2025 [August 1st, 2025]
- A thermodynamic approach to machine learning: How optimal transport theory can improve generative models - Tech Xplore - August 1st, 2025 [August 1st, 2025]
- Machine Learning Transforms Immunotherapy in Metastatic NSCLC - BIOENGINEER.ORG - August 1st, 2025 [August 1st, 2025]
- Clinical decision support for vestibular diagnosis: large-scale machine learning with lived experience coaching - Nature - August 1st, 2025 [August 1st, 2025]
- Graph theoretic and machine learning approaches in molecular property prediction of bladder cancer therapeutics - Nature - August 1st, 2025 [August 1st, 2025]
- Automotive Battery Management System Market Outlook Report 2025-2034 | AI and Machine Learning Transforming the BMS Technology Landscape - Yahoo.co - August 1st, 2025 [August 1st, 2025]
- Machine learning model predicts radiotherapy response in patients with nasopharyngeal carcinoma - News-Medical - August 1st, 2025 [August 1st, 2025]
- Google is experimenting with machine learning-powered age-estimation tech in the US - Yahoo Finance - August 1st, 2025 [August 1st, 2025]
- Identification and validation of an explainable machine learning model for vascular depression diagnosis in the older adults: a multicenter cohort... - August 1st, 2025 [August 1st, 2025]
- Machine learning-based high-benefit approach versus traditional high-risk approach in statin therapy: the Shizuoka Kokuho database study - Nature - August 1st, 2025 [August 1st, 2025]
- Investigating the Impact of the Stationarity Hypothesis on Heart Failure Detection using Deep Convolutional Scattering Networks and Machine Learning -... - August 1st, 2025 [August 1st, 2025]
- Predicting Sepsis with Machine Learning and Lab-on-a-Chip - Electropages - August 1st, 2025 [August 1st, 2025]
- Classification accuracy of pain intensity induced by leg blood flow restriction during walking using machine learning based on electroencephalography... - August 1st, 2025 [August 1st, 2025]
- Machine learning-based drug-drug interaction prediction: a critical review of models, limitations, and data challenges - Frontiers - August 1st, 2025 [August 1st, 2025]
- AI and Machine Learning - AI and geospatial companies join forces to map Africa - Smart Cities World - July 30th, 2025 [July 30th, 2025]
- Summer research project explores alternative machine learning framework - Mercer University - July 30th, 2025 [July 30th, 2025]
- Unveiling multiscale drivers of wind speed in Michigan using machine learning - Nature - July 30th, 2025 [July 30th, 2025]
- New machine learning tool reveals atomic structure of ultra-thin film materials - Phys.org - July 28th, 2025 [July 28th, 2025]
- Optimizing base fluid composition for PEMFC cooling: A machine learning approach to balance thermal and rheological performance - Nature - July 28th, 2025 [July 28th, 2025]
- Overview: Machine learning in the medical space - Scientist Live - July 28th, 2025 [July 28th, 2025]
- IMD develops a novel machine-learning-based tool to predict urban rainfall trends in India - Research Matters - July 28th, 2025 [July 28th, 2025]
- Unsupervised System 2 Thinking: The Next Leap in Machine Learning with Energy-Based Transformers - MarkTechPost - July 27th, 2025 [July 27th, 2025]
- A machine learning-based approach to predict depression in Chinese older adults with subjective cognitive decline: a longitudinal study - Nature - July 27th, 2025 [July 27th, 2025]
- Machine Learning Identifies Role of Impaired Purine Metabolism in Gout Pathogenesis - HCPLive - July 27th, 2025 [July 27th, 2025]
- Detection of breast cancer using machine learning and explainable artificial intelligence - Nature - July 27th, 2025 [July 27th, 2025]
- Investigation of key ferroptosis-associated genes and potential therapeutic drugs for asthma based on machine learning and regression models - Nature - July 27th, 2025 [July 27th, 2025]
- Predicting postoperative trauma-induced coagulopathy in patients with severe injuries by machine learning - Nature - July 27th, 2025 [July 27th, 2025]
- Machine learning based multi-stage intrusion detection system and feature selection ensemble security in cloud assisted vehicular ad hoc networks -... - July 27th, 2025 [July 27th, 2025]
- Comparative analysis of machine learning models for malaria detection using validated synthetic data: a cost-sensitive approach with clinical domain... - July 27th, 2025 [July 27th, 2025]
- Statistical modelling and forecasting of HIV and anti-retroviral therapy cases by time-series and machine learning models - Nature - July 27th, 2025 [July 27th, 2025]
- Seeing Through the Rust: How Machine Learning is Improving Corrosion Detection - Research Matters - July 27th, 2025 [July 27th, 2025]
- Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S - ACS Publications - July 24th, 2025 [July 24th, 2025]
- Machine learning-based academic performance prediction with explainability for enhanced decision-making in educational institutions - Nature - July 24th, 2025 [July 24th, 2025]
- Can External Validation Tools Can Improve Annotation Quality for LLM-as-a-Judge - Apple Machine Learning Research - July 24th, 2025 [July 24th, 2025]
- How to use learning curves to evaluate the sample size for malaria prediction models developed using machine learning algorithms - Malaria Journal - July 24th, 2025 [July 24th, 2025]
- Development and validation of a dynamic early warning system with time-varying machine learning models for predicting hemodynamic instability in... - July 24th, 2025 [July 24th, 2025]
- Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning -... - July 24th, 2025 [July 24th, 2025]
- Algorithmica Reports 35% Return in First Fiscal Year, Driven by Machine Learning Trading Technology - PR Newswire - July 24th, 2025 [July 24th, 2025]
- New research using machine learning further links increase in earthquakes, quake intensity, in Raton Basin to wastewater injections - The... - July 24th, 2025 [July 24th, 2025]
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]