Medical content creation in the age of generative AI | Amazon Web Services – AWS Blog
Generative AI and transformer-based large language models (LLMs) have been in the top headlines recently. These models demonstrate impressive performance in question answering, text summarization, code, and text generation. Today, LLMs are being used in real settings by companies, including the heavily-regulated healthcare and life sciences industry (HCLS). The use cases can range from medical information extraction and clinical notes summarization to marketing content generation and medical-legal review automation (MLR process). In this post, we explore how LLMs can be used to design marketing content for disease awareness.
Marketing content is a key component in the communication strategy of HCLS companies. Its also a highly non-trivial balance exercise, because the technical content should be as accurate and precise as possible, yet engaging and empowering for the target audience. The main goal of the marketing content is to raise awareness about certain health conditions and disseminate knowledge of possible therapies among patients and healthcare providers. By accessing up-to-date and accurate information, healthcare providers can adapt their patients treatment in a more informed and knowledgeable way. However, medical content being highly sensitive, the generation process can be relatively slow (from days to weeks), and may go through numerous peer-review cycles, with thorough regulatory compliance and evaluation protocols.
Could LLMs, with their advanced text generation capabilities, help streamline this process by assisting brand managers and medical experts in their generation and review process?
To answer this question, the AWS Generative AI Innovation Center recently developed an AI assistant for medical content generation. The system is built upon Amazon Bedrock and leverages LLM capabilities to generate curated medical content for disease awareness. With this AI assistant, we can effectively reduce the overall generation time from weeks to hours, while giving the subject matter experts (SMEs) more control over the generation process. This is accomplished through anautomatedrevisionfunctionality, which allows the user to interact and send instructions and comments directly to the LLM via an interactive feedback loop. This is especially important since the revision of content is usually the main bottleneck in the process.
Since every piece of medical information can profoundly impact the well-being of patients, medical content generation comes with additional requirements and hinges upon the contents accuracy and precision. For this reason, our system has been augmented with additional guardrails for fact-checking and rules evaluation. The goal of these modules is to assess the factuality of the generated text and its alignment with pre-specified rules and regulations. With these additional features, you have more transparency and control over the underlying generative logic of the LLM.
This post walks you through the implementation details and design choices, focusing primarily on thecontent generationandrevision modules. Fact-checking and rules evaluation require special coverage and will be discussed in an upcoming post.
Image1:High-level overview of the AI-assistant and its different components
The overall architecture and the main steps in the content creation process are illustrated inImage 2.The solution has been designed using the following services:
Image 2: Content generation steps
The workflow is as follows:
To generate accurate medical content, the LLM is provided with a set of curated scientific data related to the disease in question, e.g. medical journals, articles, websites, etc. These articles are chosen by brand managers, medical experts and other SMEs with adequate medical expertise.
The input also consists of a brief, which describesthe general requirements and rules the generated content should adhere to (tone, style, target audience, number of words, etc.). In the traditional marketing content generation process, this brief is usually sent to content creation agencies.
It is also possible to integrate more elaborate rules or regulations, such as the HIPAA privacy guidelines for theprotection of health information privacy and security. Moreover, these rules can either be general and universally applicable or they can be more specific to certain cases. For example, some regulatory requirements may apply to some markets/regions or a particular disease. Our generative system allows a high degree of personalization so you can easily tailor and specialize the content to new settings, by simply adjusting the input data.
The content should be carefully adapted to the target audience, either patients or healthcare professionals. Indeed, the tone, style, and scientific complexity should be chosen depending on the readers familiarity with medical concepts.The content personalization is incredibly important for HCLS companies with a large geographical footprint, as it enables synergies and yields more efficiencies across regional teams.
From a system design perspective, we may need to process a large number of curated articles and scientific journals. This is especially true if the disease in question requires sophisticated medical knowledge or relies on more recent publications. Moreover, medical references contain a variety of information, structured in either plain text or more complex images, with embedded annotations and tables. To scale the system, it is important to seamlessly parse, extract, and store this information. For this purpose, we use Amazon Textract, a machine learning (ML) service for entity recognition and extraction.
Once the input data is processed, it is sent to the LLM as contextual information through API calls. With a context window as large as 200K tokens for Anthropic Claude 3, we can choose to either use the original scientific corpus, hence improving the quality of the generated content (though at the price of increased latency), or summarize the scientific references before using them in the generative pipeline.
Medical reference summarization is an essential step in the overall performance optimization and is achieved by leveraging LLM summarization capabilities. We use prompt engineering to send our summarization instructions to the LLM. Importantly, when performed, summarization should preserve as much articles metadata as possible, such as the title, authors, date, etc.
Image 3: A simplified version of the summarization prompt
To start the generative pipeline, the user can upload their input data to the UI. This will trigger the Textract and optionally, the summarization Lambda functions, which, upon completion, will write the processed data to an S3 bucket. Any subsequent Lambda function can read its input data directly from S3. By reading data from S3, we avoid throttling issues usually encountered with Websockets when dealing with large payloads.
Image 4: A high-level schematic of the content generation pipeline
Our solution relies primarily on prompt engineering to interact with Bedrock LLMs. All the inputs (articles, briefs and rules) are provided as parameters to the LLM via a LangChain PrompteTemplate object. We can guide the LLM further with few-shot examples illustrating, for instance, the citation styles. Fine-tuning in particular, Parameter-Efficient Fine-Tuning techniques can specialize the LLM further to the medical knowledge and will be explored at a later stage.
Image 5: A simplified schematic of the content generation prompt
Our pipeline is multilingual in the sense it can generate content in different languages. Claude 3, for example, has been trained on dozens of different languages besides English and can translate content between them. However, we recognize that in some cases, the complexity of the target language may require a specialized tool, in which case, we may resort to an additional translation step using Amazon Translate.
Image 6: Animation showing the generation of an article on Ehlers-Danlos syndrome, its causes, symptoms, and complications
Revision is an important capability in our solution because it enables you to further tune the generated content by iteratively prompting the LLM with feedback. Since the solution has been designed primarily as an assistant, these feedback loops allow our tool to seamlessly integrate with existing processes, hence effectively assisting SMEs in the design of accurate medical content. The user can, for instance, enforce a rule that has not been perfectly applied by the LLM in a previous version, or simply improve the clarity and accuracy of some sections. The revision can be applied to the whole text. Alternatively, the user can choose to correct individual paragraphs. In both cases, the revised version and the feedback are appended to a new prompt and sent to the LLM for processing.
Image 7: A simplified version of the content revision prompt
Upon submission of the instructions to the LLM, a Lambda function triggers a new content generation process with the updated prompt. To preserve the overall syntactic coherence, it is preferable to re-generate the whole article, keeping the other paragraphs untouched. However, one can improve the process by re-generating only those sections for which feedback has been provided. In this case, proper attention should be paid to the consistency of the text. This revision process can be applied recursively, by improving upon the previous versions, until the content is deemed satisfactory by the user.
Image 8: Animation showing the revision of the Ehlers-Danlos article. The user can ask, for example, for additional information
With the recent improvements in the quality of LLM-generated text, generative AI has become a transformative technology with the potential to streamline and optimize a wide range of processes and businesses.
Medical content generation for disease awareness is a key illustration of how LLMs can be leveraged to generate curated and high-quality marketing content in hours instead of weeks, hence yielding a substantial operational improvement andenabling more synergies between regional teams. Through its revision feature, our solution canbe seamlessly integrated with existing traditional processes, making it a genuine assistant tool empowering medical experts and brand managers.
Marketing content for disease awareness is also a landmark example of a highly regulated use case, where precision and accuracy of the generated content are critically important. To enable SMEs to detect and correct any possible hallucination and erroneous statements, we designed a factuality checking module with the purpose of detecting potential misalignment in the generated text with respect to source references.
Furthermore, our rule evaluation feature can help SMEs with the MLR process by automatically highlighting any inadequate implementation of rules or regulations. With these complementary guardrails, we ensure both scalability and robustness of our generative pipeline, and consequently, the safe and responsible deployment of AI in industrial and real-world settings.
Sarah Boufelja Y. is a Sr. Data Scientist with 8+ years of experience in Data Science and Machine Learning. In her role at the GenAII Center, she worked with key stakeholders to address their Business problems using the tools of machine learning and generative AI. Her expertise lies at the intersection of Machine Learning, Probability Theory and Optimal Transport.
Liza (Elizaveta) Zinovyeva is an Applied Scientist at AWS Generative AI Innovation Center and is based in Berlin. She helps customers across different industries to integrate Generative AI into their existing applications and workflows. She is passionate about AI/ML, finance and software security topics. In her spare time, she enjoys spending time with her family, sports, learning new technologies, and table quizzes.
Nikita Kozodoi is an Applied Scientist at the AWS Generative AI Innovation Center, where he builds and advances generative AI and ML solutions to solve real-world business problems for customers across industries. In his spare time, he loves playing beach volleyball.
Marion Eigneris a Generative AI Strategist who has led the launch of multiple Generative AI solutions. With expertise across enterprise transformation and product innovation, she specializes in empowering businesses to rapidly prototype, launch, and scale new products and services leveraging Generative AI.
Nuno Castro is a Sr. Applied Science Manager at AWS Generative AI Innovation Center. He leads Generative AI customer engagements, helping AWS customers find the most impactful use case from ideation, prototype through to production. Hes has 17 years experience in the field in industries such as finance, manufacturing, and travel, leading ML teams for 10 years.
Aiham Taleb, PhD, is an Applied Scientist at the Generative AI Innovation Center, working directly with AWS enterprise customers to leverage Gen AI across several high-impact use cases. Aiham has a PhD in unsupervised representation learning, and has industry experience that spans across various machine learning applications, including computer vision, natural language processing, and medical imaging.
See more here:
Medical content creation in the age of generative AI | Amazon Web Services - AWS Blog
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]