Machine Learning Will be one of the Best Ways to Identify Habitable Exoplanets – Universe Today
The field of extrasolar planet studies is undergoing a seismic shift. To date, 4,940 exoplanets have been confirmed in 3,711 planetary systems, with another 8,709 candidates awaiting confirmation. With so many planets available for study and improvements in telescope sensitivity and data analysis, the focus is transitioning from discovery to characterization. Instead of simply looking for more planets, astrobiologists will examine potentially-habitable worlds for potential biosignatures.
This refers to the chemical signatures associated with life and biological processes, one of the most important of which is water. As the only known solvent that life (as we know it) cannot exist, water is considered the divining rod for finding life. In a recent study, astrophysicists Dang Pham and Lisa Kaltenegger explain how future surveys (when combined with machine learning) could discern the presence of water, snow, and clouds on distant exoplanets.
Dang Pham is a graduate student with the David A. Dunlap Department of Astronomy & Astrophysics at the University of Toronto, where he specializes in planetary dynamics research. Lisa Kaltenegger is an Associate Professor in Astronomy at Cornell University, the Director of the Carl Sagan Institute, and a world-leading expert in modeling potentially habitable worlds and characterizing their atmospheres.
Water is something that all life on Earth depends on, hence its importance for exoplanet and astrobiological surveys. As Lisa Kaltenegger told Universe Today via email, this importance is reflected in NASAs slogan just follow the water which also inspired the title of their paper:
Liquid water on a planets surface is one of the smoking guns for potential life I say potential here because we dont know what else we need to get life started. But liquid water is a great start. So we used NASAs slogan of Just follow the water and asked, how can we find water on the surface of rocky exoplanets in the Habitable Zone? Doing spectroscopy is time intensive, thus we are searching for a faster way to initially identify promising planets those with liquid water on it.
Currently, astronomers have been limited to looking for Lyman-alpha line absorption, which indicates the presence of hydrogen gas in an exoplanets atmosphere. This is a byproduct of atmospheric water vapor thats been exposed to solar ultraviolet radiation, causing it to become chemically disassociated into hydrogen and molecular oxygen (O2) the former of which is lost to space while the latter is retained.
This is about to change, thanks to next-generation telescopes like the James Webb (JWST) and Nancy Grace Roman Space Telescopes (RST), as well as next-next-generation observatories like the Origins Space Telescope, the Habitable Exoplanet Observatory (HabEx), and the Large UV/Optical/IR Surveyor (LUVOIR). There are also ground-based telescopes like the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT), and the Thirty Meter Telescope (TMT).
Thanks to their large primary mirrors and advanced suite of spectrographs, chronographs, adaptive optics, these instruments will be able to conduct Direct Imaging studies of exoplanets. This consists of studying light reflected directly from an exoplanets atmosphere or surface to obtain spectra, allowing astronomers to see what chemical elements are present. But as they indicate in their paper, this is a time-intensive process.
Astronomers start by observing thousands of stars for periodic dips in brightness, then analyzing the light curves for signs of chemical signatures. Currently, exoplanet researchers and astrobiologists rely on amateur astronomers and machine algorithms to sort through the volumes of data their telescopes obtain. Looking ahead, Pham and Kaltenegger show how more advanced machine learning will be crucial.
As they indicate, MI techniques will allow astronomers to conduct the initial characterizations of exoplanets more rapidly, allowing astronomers to prioritize targets for follow-up observations. By following the water, astronomers will be able to dedicate more of an observatorys valuable survey time to exoplanets that are more likely to provide significant returns.
Next-generation telescopes will look for water vapor in the atmosphere of planets and water on the surface of planets, said Kaltenegger. Of course, to find water on the surface of planets, you should look [for water in its] liquid, solid, and gaseous forms, as we did in our paper.
Machine learning allows us to quickly identify optimal filters, as well as the trade-off in accuracy at various signal-to-noise ratios, added Pham. In the first task, using [the open-source algorithm] XGBoost, we get a ranking of which filters are most helpful for the algorithm in its tasks of detecting water, snow, or cloud. In the second task, we can observe how much better the algorithm performs with less noise. With that, we can draw a line where getting more signal would not correspond to much better accuracy.
To make sure their algorithm was up to the task, Pham and Kaltenegger did some considerable calibrating. This consisted of creating 53,130 spectra profiles of a cold Earth with various surface components including snow, water, and water clouds. They then simulated the spectra for this water in terms of atmosphere and surface reflectivity and assigned color profiles. As Pham explained:
The atmosphere was modeled using Exo-Prime2 Exo-Prime2 has been validated by comparison to Earth in various missions. The reflectivity of surfaces like snow and water are measured on Earth by USGS. We then create colors from these spectra. We train XGBoost on these colors to perform three separate goals: detecting the existence of water, the existence of clouds, and the existence of snow.
This trained XGBoost showed that clouds and snow are easier to identify than water, which is expected since clouds and snow have a much higher albedo (greater reflectivity of sunlight) than water. They further identified five optimal filters that worked extremely well for the algorithm, all of which were 0.2 micrometers broad and in the visible light range. The final step was to perform a mock probability assessment to evaluate their planet model regarding liquid water, snow, and clouds from the set of five optimal filters they identified.
Finally, we [performed] a brief Bayesian analysis using Markov-Chain Monte Carlo (MCMC) to do the same task on the five optimal filters, as a non-machine learning method to validate our finding, said Pham. Our findings there are similar: water is harder to detect, but identifying water, snow, and cloud through photometry is feasible.
Similarly, they were surprised to see how well the trained XGBoost could identify water on the surface of rocky planets based on color alone. According to Kaltenegger, this is what filters really are: a means for separating light into discreet bins. Imagine a bin for all red light (the red filter), then a bin for all the green light, from light to dark green (the green filter), she said.
Their proposed method does not identify water in exoplanet atmospheres but on an exoplanets surface via photometry. In addition, it will not work with the Transit Method (aka. Transit Photometry), which is currently the most widely-used and effective means of exoplanet detection. This method consists of observing distant stars for periodic dips in luminosity attributed to exoplanets passing in front of the star (aka. transiting) relative to the observer.
On occasion, astronomers can obtain spectra from an exoplanets atmosphere as it makes a transit a process known as transit spectroscopy. As the suns light passes through the exoplanets atmosphere relative to the observer, astronomers will analyze it with spectrometers to determine what chemicals are there. Using its sensitive optics and suite of spectrometers, the JWST will rely on this method to characterize exoplanet atmospheres.
But as Pham and Kaltenegger indicate, their algorithm will only work with reflected light from the direct imaging of exoplanets. This is especially good news considering that spectroscopy obtained through Direct Imaging studies is likely to reveal more about exoplanets not just the chemical composition of their atmospheres. According to Kaltenegger, this creates all kinds of opportunities for next-generation missions:
This is opening up the opportunity for smaller space missions like the Nancy Roman telescope to help identify worlds that could host life. And for larger upcoming telescopes as recommended by the decadal survey it allows them to scan the rocky planets in the Habitable Zone for the most promising candidates those with water on their surface, so we spend the time characterizing the most interesting ones and effectively search for life on planets that have great conditions for it to get started.
The paper that describes their findings was recently published in the Monthly Notices of the Royal Astronomical Society (MNRAS).
Further Reading: arXiv
Like Loading...
The rest is here:
Machine Learning Will be one of the Best Ways to Identify Habitable Exoplanets - Universe Today
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]
- Utilizing machine learning to predict MRI signal outputs from iron oxide nanoparticles through the PSLG algorithm - Nature - July 16th, 2025 [July 16th, 2025]
- Developing a machine-learning model to enable treatment selection for neoadjuvant chemotherapy for esophageal cancer - Nature - July 16th, 2025 [July 16th, 2025]
- Advancing crop recommendation system with supervised machine learning and explainable artificial intelligence - Nature - July 16th, 2025 [July 16th, 2025]
- Predicting clozapine-induced adverse drug reaction biomarkers using machine learning - Nature - July 16th, 2025 [July 16th, 2025]
- Postoperative complication severity prediction in penile prosthesis implantation: a machine learning-based predictive modeling study - Nature - July 16th, 2025 [July 16th, 2025]
- The Future of AI & Machine Learning: Perspective on Shaping Tomorrows Business Landscape - Vocal - July 16th, 2025 [July 16th, 2025]
- Machine Learning: Your Ticket to a Thriving Career in the Tech World - The Impressive Times - July 14th, 2025 [July 14th, 2025]
- Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal... - July 14th, 2025 [July 14th, 2025]
- Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics - Nature - July 14th, 2025 [July 14th, 2025]
- Development and validation of a machine learning-based nomogram for survival prediction of patients with hilar cholangiocarcinoma after... - July 12th, 2025 [July 12th, 2025]
- Geochemical-integrated machine learning approach predicts the distribution of cadmium speciation in European and Chinese topsoils - Nature - July 12th, 2025 [July 12th, 2025]
- Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma... - July 12th, 2025 [July 12th, 2025]
- Application of supervised machine learning and unsupervised data compression models for pore pressure prediction employing drilling, petrophysical,... - July 12th, 2025 [July 12th, 2025]
- Machine learning identifies lipid-associated genes and constructs diagnostic and prognostic models for idiopathic pulmonary fibrosis - Orphanet... - July 12th, 2025 [July 12th, 2025]
- An evaluation methodology for machine learning-based tandem mass spectra similarity prediction - BMC Bioinformatics - July 12th, 2025 [July 12th, 2025]
- The Rise of AI in Trading: Machine Learning and the Stock Market - Disruption Banking - July 12th, 2025 [July 12th, 2025]
- Integrative analysis identifies IL-6/JUN/MMP-9 pathway destroyed blood-brain-barrier in autism mice via machine learning and bioinformatic analysis -... - July 12th, 2025 [July 12th, 2025]
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]
- Machine learning-based identification of key factors and spatial heterogeneity analysis of urban flooding: a case study of the central urban area of... - July 10th, 2025 [July 10th, 2025]
- Developing machine learning frameworks to predict mechanical properties of ultra-high performance concrete mixed with various industrial byproducts -... - July 10th, 2025 [July 10th, 2025]
- Small Drones Market Trend Analysis and Forecast Report 2025-2034 | AI and Machine Learning Revolutionizing Autonomous Operations, Trade Tariffs Push... - July 10th, 2025 [July 10th, 2025]
- When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning - Dataconomy - July 10th, 2025 [July 10th, 2025]
- New Study Uses Gait Data and Machine Learning for Early Detection of Anxiety and Depression - AZoSensors - July 10th, 2025 [July 10th, 2025]
- Machine Learning and the Evolution of Mobile Apps - CIO Applications - July 10th, 2025 [July 10th, 2025]
- Artificial Intelligence, Machine Learning, and Big Data in Thailand: Legal and Regulatory Developments 2025 - Lexology - July 10th, 2025 [July 10th, 2025]
- Karen Hao on how the AI boom became a new imperial frontier - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Machine Learning and AI in Enhancing Image Analysis of 3D Samples - Drug Target Review - July 8th, 2025 [July 8th, 2025]
- Gartner Predicts Over 40% of Agentic AI Projects Will Be Canceled by End of 2027 - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Explainable machine learning model for predicting the transarterial chemoembolization response and subtypes of hepatocellular carcinoma patients - BMC... - July 8th, 2025 [July 8th, 2025]
- Identification and validation of glucocorticoid receptor and programmed cell death-related genes in spinal cord injury using machine learning - Nature - July 8th, 2025 [July 8th, 2025]
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]