Machine Learning vs. Deep Learning: What’s the Difference? – Gizmodo
Artificial intelligence is everywhere these days, but the fundamentals of how this influential new technology works can be difficult to wrap your head around. Two of the most important fields in AI development are machine learning and its sub-field, deep learning, although the terms are sometimes used interchangeably, leading to a certain amount of confusion. Heres a quick explanation of what these two important disciplines are, and how theyre contributing to the evolution of automation.
Like It or Not, Your Doctor Will Use AI | AI Unlocked
Proponents of artificial intelligence say they hope to someday create a machine that can think for itself. The human brain is a magnificent instrument, capable of making computations that far outstrip the capacity of any currently existing machine. Software engineers involved in AI development hope to eventually make a machine that can do everything a human can do intellectually but can also surpass it. Currently, the applications of AI in business and government largely amount to predictive algorithms, the kind that suggest your next song on Spotify or try to sell you a similar product to the one you bought on Amazon last week. However, AI evangelists believe that the technology will, eventually, be able to reason and make decisions that are much more complicated. This is where ML and DL come in.
Machine learning (or ML) is a broad category of artificial intelligence that refers to the process by which software programs are taught how to make predictions or decisions. One IBM engineer, Jeff Crume, explains machine learning as a very sophisticated form of statistical analysis. According to Crume, this analysis allows machines to make predictions or decisions based on data. The more information that is fed into the system, the more its able to give us accurate predictions, he says.
Unlike general programming where a machine is engineered to complete a very specific task, machine learning revolves around training an algorithm to identify patterns in data by itself. As previously stated, machine learning encompasses a broad variety of activities.
Deep learning is machine learning. It is one of those previously mentioned sub-categories of machine learning that, like other forms of ML, focuses on teaching AI to think. Unlike some other forms of machine learning, DL seeks to allow algorithms to do much of their work. DL is fueled by mathematical models known as artificial neural networks (ANNs). These networks seek to emulate the processes that naturally occur within the human brainthings like decision-making and pattern identification.
One of the biggest differences between deep learning and other forms of machine learning is the level of supervision that a machine is provided. In less complicated forms of ML, the computer is likely engaged in supervised learninga process whereby a human helps the machine recognize patterns in labeled, structured data, and thereby improve its ability to carry out predictive analysis.
Machine learning relies on huge amounts of training data. Such data is often compiled by humans via data labeling (many of those humans are not paid very well). Through this process, a training dataset is built, which can then be fed into the AI algorithm and used to teach it to identify patterns. For instance, if a company was training an algorithm to recognize a specific brand of car in photos, it would feed the algorithm huge tranches of photos of that car model that had been manually labeled by human staff. A testing dataset is also created to measure the accuracy of the machines predictive powers, once it has been trained.
When it comes to DL, meanwhile, a machine engages in a process called unsupervised learning. Unsupervised learning involves a machine using its neural network to identify patterns in what is called unstructured or raw datawhich is data that hasnt yet been labeled or organized into a database. Companies can use automated algorithms to sift through swaths of unorganized data and thereby avoid large amounts of human labor.
ANNs are made up of what are called nodes. According to MIT, one ANN can have thousands or even millions of nodes. These nodes can be a little bit complicated but the shorthand explanation is that theylike the nodes in the human brainrelay and process information. In a neural network, nodes are arranged in an organized form that is referred to as layers. Thus, deep learning networks involve multiple layers of nodes. Information moves through the network and interacts with its various environs, which contributes to the machines decision-making process when subjected to a human prompt.
Another key concept in ANNs is the weight, which one commentator compares to the synapses in a human brain. Weights, which are just numerical values, are distributed throughout an AIs neural network and help determine the ultimate outcome of that AI systems final output. Weights are informational inputs that help calibrate a neural network so that it can make decisions. MITs deep dive on neural networks explains it thusly:
To each of its incoming connections, a node will assign a number known as a weight. When the network is active, the node receives a different data item a different number over each of its connections and multiplies it by the associated weight. It then adds the resulting products together, yielding a single number. If that number is below a threshold value, the node passes no data to the next layer. If the number exceeds the threshold value, the node fires, which in todays neural nets generally means sending the number the sum of the weighted inputs along all its outgoing connections.
In short: neural networks are structured to help an algorithm come to its own conclusions about data that has been fed to it. Based on its programming, the algorithm can identify helpful connections in large tranches of data, helping humans to draw their own conclusions based on its analysis.
Machine and deep learning help train machines to carry out predictive and interpretive activities that were previously only the domain of humans. This can have a lot of upsides but the obvious downside is that these machines can (and, lets be honest, will) inevitably be used for nefarious, not just helpful, stuffthings like government and private surveillance systems, and the continued automation of military and defense activity. But, theyre also, obviously, useful for consumer suggestions or coding and, at their best, medical and health research. Like any other tool, whether artificial intelligence has a good or bad impact on the world largely depends on who is using it.
Read the original here:
Machine Learning vs. Deep Learning: What's the Difference? - Gizmodo
- Google is experimenting with machine learning-powered age-estimation tech in the US - TechCrunch - August 1st, 2025 [August 1st, 2025]
- Google Will Use Machine Learning to Estimate Users Age and Block Them From Restricted Content and Ads - Adweek - August 1st, 2025 [August 1st, 2025]
- A thermodynamic approach to machine learning: How optimal transport theory can improve generative models - Tech Xplore - August 1st, 2025 [August 1st, 2025]
- Machine Learning Transforms Immunotherapy in Metastatic NSCLC - BIOENGINEER.ORG - August 1st, 2025 [August 1st, 2025]
- Clinical decision support for vestibular diagnosis: large-scale machine learning with lived experience coaching - Nature - August 1st, 2025 [August 1st, 2025]
- Graph theoretic and machine learning approaches in molecular property prediction of bladder cancer therapeutics - Nature - August 1st, 2025 [August 1st, 2025]
- Automotive Battery Management System Market Outlook Report 2025-2034 | AI and Machine Learning Transforming the BMS Technology Landscape - Yahoo.co - August 1st, 2025 [August 1st, 2025]
- Machine learning model predicts radiotherapy response in patients with nasopharyngeal carcinoma - News-Medical - August 1st, 2025 [August 1st, 2025]
- Google is experimenting with machine learning-powered age-estimation tech in the US - Yahoo Finance - August 1st, 2025 [August 1st, 2025]
- Identification and validation of an explainable machine learning model for vascular depression diagnosis in the older adults: a multicenter cohort... - August 1st, 2025 [August 1st, 2025]
- Machine learning-based high-benefit approach versus traditional high-risk approach in statin therapy: the Shizuoka Kokuho database study - Nature - August 1st, 2025 [August 1st, 2025]
- Investigating the Impact of the Stationarity Hypothesis on Heart Failure Detection using Deep Convolutional Scattering Networks and Machine Learning -... - August 1st, 2025 [August 1st, 2025]
- Predicting Sepsis with Machine Learning and Lab-on-a-Chip - Electropages - August 1st, 2025 [August 1st, 2025]
- Classification accuracy of pain intensity induced by leg blood flow restriction during walking using machine learning based on electroencephalography... - August 1st, 2025 [August 1st, 2025]
- Machine learning-based drug-drug interaction prediction: a critical review of models, limitations, and data challenges - Frontiers - August 1st, 2025 [August 1st, 2025]
- AI and Machine Learning - AI and geospatial companies join forces to map Africa - Smart Cities World - July 30th, 2025 [July 30th, 2025]
- Summer research project explores alternative machine learning framework - Mercer University - July 30th, 2025 [July 30th, 2025]
- Unveiling multiscale drivers of wind speed in Michigan using machine learning - Nature - July 30th, 2025 [July 30th, 2025]
- New machine learning tool reveals atomic structure of ultra-thin film materials - Phys.org - July 28th, 2025 [July 28th, 2025]
- Optimizing base fluid composition for PEMFC cooling: A machine learning approach to balance thermal and rheological performance - Nature - July 28th, 2025 [July 28th, 2025]
- Overview: Machine learning in the medical space - Scientist Live - July 28th, 2025 [July 28th, 2025]
- IMD develops a novel machine-learning-based tool to predict urban rainfall trends in India - Research Matters - July 28th, 2025 [July 28th, 2025]
- Unsupervised System 2 Thinking: The Next Leap in Machine Learning with Energy-Based Transformers - MarkTechPost - July 27th, 2025 [July 27th, 2025]
- A machine learning-based approach to predict depression in Chinese older adults with subjective cognitive decline: a longitudinal study - Nature - July 27th, 2025 [July 27th, 2025]
- Machine Learning Identifies Role of Impaired Purine Metabolism in Gout Pathogenesis - HCPLive - July 27th, 2025 [July 27th, 2025]
- Detection of breast cancer using machine learning and explainable artificial intelligence - Nature - July 27th, 2025 [July 27th, 2025]
- Investigation of key ferroptosis-associated genes and potential therapeutic drugs for asthma based on machine learning and regression models - Nature - July 27th, 2025 [July 27th, 2025]
- Predicting postoperative trauma-induced coagulopathy in patients with severe injuries by machine learning - Nature - July 27th, 2025 [July 27th, 2025]
- Machine learning based multi-stage intrusion detection system and feature selection ensemble security in cloud assisted vehicular ad hoc networks -... - July 27th, 2025 [July 27th, 2025]
- Comparative analysis of machine learning models for malaria detection using validated synthetic data: a cost-sensitive approach with clinical domain... - July 27th, 2025 [July 27th, 2025]
- Statistical modelling and forecasting of HIV and anti-retroviral therapy cases by time-series and machine learning models - Nature - July 27th, 2025 [July 27th, 2025]
- Seeing Through the Rust: How Machine Learning is Improving Corrosion Detection - Research Matters - July 27th, 2025 [July 27th, 2025]
- Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S - ACS Publications - July 24th, 2025 [July 24th, 2025]
- Machine learning-based academic performance prediction with explainability for enhanced decision-making in educational institutions - Nature - July 24th, 2025 [July 24th, 2025]
- Can External Validation Tools Can Improve Annotation Quality for LLM-as-a-Judge - Apple Machine Learning Research - July 24th, 2025 [July 24th, 2025]
- How to use learning curves to evaluate the sample size for malaria prediction models developed using machine learning algorithms - Malaria Journal - July 24th, 2025 [July 24th, 2025]
- Development and validation of a dynamic early warning system with time-varying machine learning models for predicting hemodynamic instability in... - July 24th, 2025 [July 24th, 2025]
- Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning -... - July 24th, 2025 [July 24th, 2025]
- Algorithmica Reports 35% Return in First Fiscal Year, Driven by Machine Learning Trading Technology - PR Newswire - July 24th, 2025 [July 24th, 2025]
- New research using machine learning further links increase in earthquakes, quake intensity, in Raton Basin to wastewater injections - The... - July 24th, 2025 [July 24th, 2025]
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]