Machine learning security needs new perspectives and incentives – TechTalks
At this years International Conference on Learning Representations (ICLR), a team of researchers from the University of Maryland presented an attack technique meant to slow down deep learning models that have been optimized for fast and sensitive operations. The attack, aptly named DeepSloth, targets adaptive deep neural networks, a range of deep learning architectures that cut down computations to speed up processing.
Recent years have seen growing interest in the security of machine learning and deep learning, and there are numerous papers and techniques on hacking and defending neural networks. But one thing made DeepSloth particularly interesting: The researchers at the University of Maryland were presenting a vulnerability in a technique they themselves had developed two years earlier.
In some ways, the story of DeepSloth illustrates the challenges that the machine learning community faces. On the one hand, many researchers and developers are racing to make deep learning available to different applications. On the other hand, their innovations cause new challenges of their own. And they need to actively seek out and address those challenges before they cause irreparable damage.
One of the biggest hurdles of deep learning the computational costs of training and running deep neural networks. Many deep learning models require huge amounts of memory and processing power, and therefore they can only run on servers that have abundant resources. This makes them unusable for applications that require all computations and data to remain on edge devices or need real-time inference and cant afford the delay caused by sending their data to a cloud server.
In the past few years, machine learning researchers have developed several techniques to make neural networks less costly. One range of optimization techniques called multi-exit architecture stops computations when a neural network reaches acceptable accuracy. Experiments show that for many inputs, you dont need to go through every layer of the neural network to reach a conclusive decision. Multi-exit neural networks save computation resources and bypass the calculations of the remaining layers when they become confident about their results.
In 2019, Yigitan Kaya, a Ph.D. student in Computer Science at the University of Maryland, developed a multi-exit technique called shallow-deep network, which could reduce the average inference cost of deep neural networks by up to 50 percent. Shallow-deep networks address the problem of overthinking, where deep neural networks start to perform unneeded computations that result in wasteful energy consumption and degrade the models performance. The shallow-deep network was accepted at the 2019 International Conference on Machine Learning (ICML).
Early-exit models are a relatively new concept, but there is a growing interest, Tudor Dumitras, Kayas research advisor and associate professor at the University of Maryland, told TechTalks. This is because deep learning models are getting more and more expensive computationally, and researchers look for ways to make them more efficient.
Dumitras has a background in cybersecurity and is also a member of the Maryland Cybersecurity Center. In the past few years, he has been engaged in research on security threats to machine learning systems. But while a lot of the work in the field focuses on adversarial attacks, Dumitras and his colleagues were interested in finding all possible attack vectors that an adversary might use against machine learning systems. Their work has spanned various fields including hardware faults, cache side-channel attacks, software bugs, and other types of attacks on neural networks.
While working on the deep-shallow network with Kaya, Dumitras and his colleagues started thinking about the harmful ways the technique might be exploited.
We then wondered if an adversary could force the system to overthink; in other words, we wanted to see if the latency and energy savings provided by early exit models like SDN are robust against attacks, he said.
Dumitras started exploring slowdown attacks on shallow-deep networks with Ionut Modoranu, then a cybersecurity research intern at the University of Maryland. When the initial work showed promising results, Kaya and Sanghyun Hong, another Ph.D. student at the University of Maryland, joined the effort. Their research eventually culminated into the DeepSloth attack.
Like adversarial attacks, DeepSloth relies on carefully crafted input that manipulates the behavior of machine learning systems. However, while classic adversarial examples force the target model to make wrong predictions, DeepSloth disrupts computations. The DeepSloth attack slows down shallow-deep networks by preventing them from making early exits and forcing them to carry out the full computations of all layers.
Slowdown attacks have the potential ofnegating the benefits ofmulti-exit architectures, Dumitras said.These architectures can halve the energy consumption of a deep neural network model at inference time, and we showed that for any input we can craft a perturbation that wipes out those savings completely.
The researchers findings show that the DeepSloth attack can reduce the efficacy of the multi-exit neural networks by 90-100 percent. In the simplest scenario, this can cause a deep learning system to bleed memory and compute resources and become inefficient at serving users.
But in some cases, it can cause more serious harm. For example, one use of multi-exit architectures involves splitting a deep learning model between two endpoints. The first few layers of the neural network can be installed on an edge location, such as a wearable or IoT device. The deeper layers of the network are deployed on a cloud server. The edge side of the deep learning model takes care of the simple inputs that can be confidently computed in the first few layers. In cases where the edge side of the model does not reach a conclusive result, it defers further computations to the cloud.
In such a setting, the DeepSloth attack would force the deep learning model to send all inferences to the cloud. Aside from the extra energy and server resources wasted, the attack could have much more destructive impact.
In a scenario typical for IoT deployments, where the model is partitioned between edge devices and the cloud, DeepSloth amplifies the latency by 1.55X, negating the benefits of model partitioning, Dumitras said. This could cause the edge device to miss critical deadlines, for instance in an elderly monitoring program that uses AI to quickly detect accidents and call for help if necessary.
While the researchers made most of their tests on deep-shallow networks, they later found that the same technique would be effective on other types of early-exit models.
As with most works on machine learning security, the researchers first assumed that an attacker has full knowledge of the target model and has unlimited computing resources to craft DeepSloth attacks. But the criticality of an attack also depends on whether it can be staged in practical settings, where the adversary has partial knowledge of the target and limited resources.
In most adversarial attacks, the attacker needs to have full access to the model itself, basically, they have an exact copy of the victim model, Kaya told TechTalks. This, of course, is not practical in many settings where the victim model is protected from outside, for example with an API like Google Vision AI.
To develop a realistic evaluation of the attacker, the researchers simulated an adversary who doesnt have full knowledge of the target deep learning model. Instead, the attacker has asurrogatemodel on which he tests and tunes the attack. The attacker thentransfers the attack to the actual target. The researchers trained surrogate models that have different neural network architectures, different training sets, and even different early-exit mechanisms.
We find that the attacker that uses a surrogate can still cause slowdowns (between 20-50%) in the victim model, Kaya said.
Such transfer attacks are much more realistic than full-knowledge attacks, Kaya said. And as long as the adversary has a reasonable surrogate model, he will be able to attack a black-box model, such as a machine learning system served through a web API.
Attacking a surrogate is effective because neural networks that perform similar tasks (e.g., object classification) tend to learn similar features (e.g., shapes, edges, colors), Kaya said.
Dumitras says DeepSloth is just the first attack that works in this threat model, and he believes more devastating slowdown attacks will be discovered. He also pointed out that, aside from multi-exit architectures, other speed optimization mechanisms are vulnerable to slowdown attacks. His research team tested DeepSloth on SkipNet, a special optimization technique for convolutional neural networks (CNN). Their findings showed that DeepSloth examples crafted for multi-exit architecture also caused slowdowns in SkipNet models.
This suggests thatthe two different mechanisms might share a deeper vulnerability, yet to be characterized rigorously, Dumitras said. I believe that slowdown attacks may become an important threat in the future.
The researchers also believe that security must be baked into the machine learning research process.
I dont think any researcher today who is doing work on machine learning is ignorant of the basic security problems. Nowadays even introductory deep learning courses include recent threat models like adversarial examples, Kaya said.
The problem, Kaya believes, has to do with adjusting incentives. Progress is measured on standardized benchmarks and whoever develops a new technique uses these benchmarks and standard metrics to evaluate their method, he said, adding that reviewers who decide on the fate of a paper also look at whether the method is evaluated according to their claims on suitable benchmarks.
Of course, when a measure becomes a target, it ceases to be a good measure, he said.
Kaya believes there should be a shift in the incentives of publications and academia. Right now, academics have a luxury or burden to make perhaps unrealistic claims about the nature of their work, he says. If machine learning researchers acknowledge that their solution will never see the light of day, their paper might be rejected. But their research might serve other purposes.
For example, adversarial training causes large utility drops, has poor scalability, and is difficult to get right, limitations that are unacceptable for many machine learning applications. But Kaya points out that adversarial training can have benefits that have been overlooked, such as steering models toward becoming more interpretable.
One of the implications of too much focus on benchmarks is that most machine learning researchers dont examine the implications of their work when applied to real-world settings and realistic settings.
Our biggest problem is that we treat machine learning security as an academic problem right now. So the problems we study and the solutions we design are also academic, Kaya says. We dont know if any real-world attacker is interested in using adversarial examples or any real-world practitioner in defending against them.
Kaya believes the machine learning community should promote and encourage research in understanding the actual adversaries of machine learning systems rather than dreaming up our own adversaries.
And finally, he says that authors of machine learning papers should be encouraged to do their homework and find ways to break their own solutions, as he and his colleagues did with the shallow-deep networks. And researchers should be explicit and clear about the limits and potential threats of their machine learning models and techniques.
If we look at the papers proposing early-exit architectures, we see theres no effort to understand security risks although they claim that these solutions are of practical value, he says. If an industry practitioner finds these papers and implements these solutions, they are not warned about what can go wrong. Although groups like ours try to expose potential problems, we are less visible to a practitioner who wants to use an early-exit model. Even including a paragraph about the potential risks involved in a solution goes a long way.
More:
Machine learning security needs new perspectives and incentives - TechTalks
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]