Machine learning reveals the control mechanics of an insect wing hinge – Nature.com

Grimaldi, D. & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).

Deora, T., Gundiah, N. & Sane, S. P. Mechanics of the thorax in flies. J. Exp. Biol. 220, 13821395 (2017).

Article PubMed Google Scholar

Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354377 (2018).

Article ADS Google Scholar

Kramer, M. A. Nonlinear principal component analysis using autoassociative neural networks. AlChE J. 37, 233243 (1991).

Article ADS CAS Google Scholar

Pringle, J. W. S. The excitation and contraction of the flight muscles of insects. J. Physiol. 108, 226232 (1949).

Article CAS PubMed PubMed Central Google Scholar

Josephson, R. K., Malamud, J. G. & Stokes, D. R. Asynchronous muscle: a primer. J. Exp. Biol. 203, 27132722 (2000).

Article CAS PubMed Google Scholar

Gau, J. et al. Bridging two insect flight modes in evolution, physiology and robophysics. Nature 622, 767774 (2023).

Article ADS CAS PubMed PubMed Central Google Scholar

Boettiger, E. G. & Furshpan, E. The mechanics of flight movements in diptera. Biol. Bull. 102, 200211 (1952).

Article Google Scholar

Pringle, J. W. S. Insect Flight (Cambridge Univ. Press, 1957).

Miyan, J. A. & Ewing, A. W. How Diptera move their wings: a re-examination of the wing base articulation and muscle systems concerned with flight. Phil. Trans. R. Soc. B 311, 271302 (1985).

ADS Google Scholar

Wisser, A. Wing beat of Calliphora erythrocephala: turning axis and gearbox of the wing base (Insecta, Diptera). Zoomorph. 107, 359369 (1988).

Article Google Scholar

Ennos, R. A. A comparative study of the flight mechanism of diptera. J. Exp. Biol. 127, 355372 (1987).

Article Google Scholar

Dickinson, M. H. & Tu, M. S. The function of dipteran flight muscle. Comp. Biochem. Physiol. A 116, 223238 (1997).

Article Google Scholar

Nalbach, G. The gear change mechanism of the blowfly (Calliphora erythrocephala) in tethered flight. J. Comp. Physiol. A 165, 321331 (1989).

Article Google Scholar

Walker, S. M., Thomas, A. L. R. & Taylor, G. K. Operation of the alula as an indicator of gear change in hoverflies. J. R. Soc. Inter. 9, 11941207 (2011).

Article Google Scholar

Walker, S. M. et al. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS Biol. 12, e1001823 (2014).

Article PubMed PubMed Central Google Scholar

Wisser, A. & Nachtigall, W. Functional-morphological investigations on the flight muscles and their insertion points in the blowfly Calliphora erythrocephala (Insecta, Diptera). Zoomorph. 104, 188195 (1984).

Article Google Scholar

Heide, G. Funktion der nicht-fibrillaren Flugmuskeln von Calliphora. I. Lage Insertionsstellen und Innervierungsmuster der Muskeln. Zool. Jahrb., Abt. allg. Zool. Physiol. Tiere 76, 8798 (1971).

Google Scholar

Fabian, B., Schneeberg, K. & Beutel, R. G. Comparative thoracic anatomy of the wild type and wingless (wg1cn1) mutant of Drosophila melanogaster (Diptera). Arth. Struct. Dev. 45, 611636 (2016).

Article Google Scholar

Tu, M. & Dickinson, M. Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. J. Exp. Biol. 192, 207224 (1994).

Article CAS PubMed Google Scholar

Tu, M. S. & Dickinson, M. H. The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). J. Comp. Physiol. A 178, 813830 (1996).

Article CAS PubMed Google Scholar

Muijres, F. T., Iwasaki, N. A., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics. Interface Focus 7, 20160103 (2017).

Article PubMed PubMed Central Google Scholar

OSullivan, A. et al. Multifunctional wing motor control of song and flight. Curr. Biol. 28, 27052717.e4 (2018).

Article PubMed Google Scholar

Azevedo, A. et al. Tools for comprehensive reconstruction and analysis of Drosophila motor circuits. Preprint at BioRxiv https://doi.org/10.1101/2022.12.15.520299 (2022).

Donovan, E. R. et al. Muscle activation patterns and motoranatomy of Annas hummingbirds Calypte anna and zebra finches Taeniopygia guttata. Physiol. Biochem. Zool. 86, 2746 (2013).

Article PubMed Google Scholar

Bashivan, P., Kar, K. & DiCarlo, J. J. Neural population control via deep image synthesis. Science 364, eaav9436 (2019).

Article CAS PubMed Google Scholar

Lindsay, T., Sustar, A. & Dickinson, M. The function and organization of the motor system controlling flight maneuvers in flies. Curr. Biol. 27, 345358 (2017).

Article CAS PubMed Google Scholar

Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral neuroscience. J. Neurosci. Meth. 167, 127139 (2008).

Article Google Scholar

Albawi, S., Mohammed, T. A. & Al-Zawi, S. Understanding of a convolutional neural network. In 2017 International Conference on Engineering and Technology (ICET) 16 https://doi.org/10.1109/ICEngTechnol.2017.8308186 (2017).

Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proc. ICNN95International Conference on Neural Networks Vol. 4, 19421948 (1995).

Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649657 (2019).

Article CAS PubMed Google Scholar

Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172177 (2014).

Article ADS CAS PubMed Google Scholar

Gordon, S. & Dickinson, M. H. Role of calcium in the regulation of mechanical power in insect flight. Proc. Natl Acad. Sci. USA 103, 43114315 (2006).

Article ADS CAS PubMed PubMed Central Google Scholar

Nachtigall, W. & Wilson, D. M. Neuro-muscular control of dipteran flight. J. Exp. Biol. 47, 7797 (1967).

Article CAS PubMed Google Scholar

Heide, G. & Gtz, K. G. Optomotor control of course and altitude in Drosophila melanogaster is correlated with distinct activities of at least three pairs of flight steering muscles. J. Exp. Biol. 199, 17111726 (1996).

Article CAS PubMed Google Scholar

Balint, C. N. & Dickinson, M. H. The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. J. Exp. Biol. 204, 42134226 (2001).

Article CAS PubMed Google Scholar

Elzinga, M. J., Dickson, W. B. & Dickinson, M. H. The influence of sensory delay on the yaw dynamics of a flapping insect. J. R. Soc. Interface 9, 16851696 (2012).

Article PubMed Google Scholar

Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960 (1999).

Article CAS PubMed Google Scholar

Lehmann, F. O. & Dickinson, M. H. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 11331143 (1997).

Article CAS PubMed Google Scholar

Lucia, S., Ttulea-Codrean, A., Schoppmeyer, C. & Engell, S. Rapid development of modular and sustainable nonlinear model predictive control solutions. Control Eng. Pract. 60, 5162 (2017).

Article Google Scholar

Cheng, B., Fry, S. N., Huang, Q. & Deng, X. Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila. J. Exp. Biol. 213, 602612 (2010).

Article CAS PubMed Google Scholar

Collett, T. S. & Land, M. F. Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. Comp. Physiol. 99, 166 (1975).

Article Google Scholar

Muijres, F. T., Elzinga, M. J., Iwasaki, N. A. & Dickinson, M. H. Body saccades of Drosophila consist of stereotyped banked turns. J. Exp. Biol. 218, 864875 (2015).

Article PubMed Google Scholar

Syme, D. A. & Josephson, R. K. How to build fast muscles: synchronous and asynchronous designs. Integr. Comp. Biol. 42, 762770 (2002).

Article PubMed Google Scholar

Snodgrass, R. E. Principles of Insect Morphology (Cornell Univ. Press, 2018).

Williams, C. M. & Williams, M. V. The flight muscles of Drosophila repleta. J. Morphol. 72, 589599 (1943).

Article Google Scholar

Wootton, R. The geometry and mechanics of insect wing deformations in flight: a modelling approach. Insects 11, 446 (2020).

Article PubMed PubMed Central Google Scholar

Lerch, S. et al. Resilin matrix distribution, variability and function in Drosophila. BMC Biol. 18, 195 (2020).

Article CAS PubMed PubMed Central Google Scholar

Weis-Fogh, T. A rubber-like protein in insect cuticle. J. Exp. Biol. 37, 889907 (1960).

Article CAS Google Scholar

Weis-Fogh, T. Energetics of hovering flight in hummingbirds and in Drosophila. J. Exp. Biol. 56, 79104 (1972).

Article Google Scholar

Ellington, C. P. The aerodynamics of hovering insect flight. VI. Lift and power requirements. Phil. Trans. R. Soc. B 305, 145181 (1984).

ADS Google Scholar

Alexander, R. M. & Bennet-Clark, H. C. Storage of elastic strain energy in muscle and other tissues. Nature 265, 114117 (1977).

Article ADS CAS PubMed Google Scholar

Mronz, M. & Lehmann, F.-O. The free-flight response of Drosophila to motion of the visual environment. J. Exp. Biol. 211, 20262045 (2008).

Article PubMed Google Scholar

More here:
Machine learning reveals the control mechanics of an insect wing hinge - Nature.com

Related Posts

Tags:

Comments are closed.