Machine Learning: Making Sense of Unstructured Data and Automation in Alt Investments – Traders Magazine
The following was written byHarald Collet, CEO at Alkymi andHugues Chabanis, Product Portfolio Manager,Alternative Investments at SimCorp
Institutional investors are buckling under the operational constraint of processing hundreds of data streams from unstructured data sources such as email, PDF documents, and spreadsheets. These data formats bury employees in low-value copy-paste workflows andblockfirms from capturing valuable data. Here, we explore how Machine Learning(ML)paired with a better operational workflow, can enable firms to more quickly extract insights for informed decision-making, and help governthe value of data.
According to McKinsey, the average professional spends 28% of the workday reading and answering an average of 120 emails on top ofthe19% spent on searching and processing data.The issue is even more pronouncedininformation-intensive industries such as financial services,asvaluable employees are also required to spendneedlesshoursevery dayprocessing and synthesizing unstructured data. Transformational change, however,is finally on the horizon. Gartner research estimates thatby 2022, one in five workers engaged in mostly non-routine tasks will rely on artificial intelligence (AI) to do their jobs. And embracing ML will be a necessity for digital transformation demanded both by the market and the changing expectations of the workforce.
For institutional investors that are operating in an environment of ongoing volatility, tighter competition, and economic uncertainty, using ML to transform operations and back-office processes offers a unique opportunity. In fact, institutional investors can capture up to 15-30% efficiency gains by applying ML and intelligent process automation (Boston Consulting Group, 2019)inoperations,which in turn creates operational alpha withimproved customer service and redesigning agile processes front-to-back.
Operationalizingmachine learningworkflows
ML has finally reached the point of maturity where it can deliver on these promises. In fact, AI has flourished for decades, but the deep learning breakthroughs of the last decade has played a major role in the current AI boom. When it comes to understanding and processing unstructured data, deep learning solutions provide much higher levels of potential automation than traditional machine learning or rule-based solutions. Rapid advances in open source ML frameworks and tools including natural language processing (NLP) and computer vision have made ML solutions more widely available for data extraction.
Asset class deep-dive: Machine learning applied toAlternative investments
In a 2019 industry survey conducted byInvestOps, data collection (46%) and efficient processing of unstructured data (41%) were cited as the top two challenges European investment firms faced when supportingAlternatives.
This is no surprise as Alternatives assets present an acute data management challenge and are costly, difficult, and complex to manage, largely due to the unstructured nature ofAlternatives data. This data is typically received by investment managers in the form of email with a variety of PDF documents or Excel templates that require significant operational effort and human understanding to interpret, capture,and utilize. For example, transaction data istypicallyreceived by investment managers as a PDF document via email oran online portal. In order to make use of this mission critical data, the investment firm has to manually retrieve, interpret, and process documents in a multi-level workflow involving 3-5 employees on average.
The exceptionally low straight-through-processing (STP) rates already suffered by investment managers working with alternative investments is a problem that will further deteriorate asAlternatives investments become an increasingly important asset class,predictedbyPrequinto rise to $14 trillion AUM by 2023 from $10 trillion today.
Specific challenges faced by investment managers dealing with manual Alternatives workflows are:
WithintheAlternatives industry, variousattempts have been madeto use templatesorstandardize the exchange ofdata. However,these attempts have so far failed,or are progressing very slowly.
Applying ML to process the unstructured data will enable workflow automation and real-time insights for institutional investment managers today, without needing to wait for a wholesale industry adoption of a standardized document type like the ILPA template.
To date, the lack of straight-through-processing (STP) in Alternatives has either resulted in investment firms putting in significant operational effort to build out an internal data processing function,or reluctantly going down the path of adopting an outsourcing workaround.
However, applyinga digital approach,more specificallyML, to workflows in the front, middle and back office can drive a number of improved outcomes for investment managers, including:
Trust and control are critical when automating critical data processingworkflows.This is achieved witha human-in-the-loopdesign that puts the employee squarely in the drivers seat with features such as confidence scoring thresholds, randomized sampling of the output, and second-line verification of all STP data extractions. Validation rules on every data element can ensure that high quality output data is generated and normalized to a specific data taxonomy, making data immediately available for action. In addition, processing documents with computer vision can allow all extracted data to be traced to the exact source location in the document (such as a footnote in a long quarterly report).
Reverse outsourcing to govern the value of your data
Big data is often considered the new oil or super power, and there are, of course, many third-party service providers standing at the ready, offering to help institutional investors extract and organize the ever-increasing amount of unstructured, big data which is not easily accessible, either because of the format (emails, PDFs, etc.) or location (web traffic, satellite images, etc.). To overcome this, some turn to outsourcing, but while this removes the heavy manual burden of data processing for investment firms, it generates other challenges, including governance and lack of control.
Embracing ML and unleashing its potential
Investment managers should think of ML as an in-house co-pilot that can help its employees in various ways: First, it is fast, documents are processed instantly and when confidence levels are high, processed data only requires minimum review. Second, ML is used as an initial set of eyes, to initiate proper workflows based on documents that have been received. Third, instead of just collecting the minimum data required, ML can collect everything, providing users with options to further gather and reconcile data, that may have been ignored and lost due to a lack of resources. Finally, ML will not forget the format of any historical document from yesterday or 10 years ago safeguarding institutional knowledge that is commonly lost during cyclical employee turnover.
ML has reached the maturity where it can be applied to automate narrow and well-defined cognitive tasks and can help transform how employees workin financial services. However many early adopters have paid a price for focusing too much on the ML technology and not enough on the end-to-end business process and workflow.
The critical gap has been in planning for how to operationalize ML for specific workflows. ML solutions should be designed collaboratively with business owners and target narrow and well-defined use cases that can successfully be put into production.
Alternatives assets are costly, difficult, and complex to manage, largely due to the unstructured nature of Alternatives data. Processing unstructured data with ML is a use case that generates high levels of STP through the automation of manual data extraction and data processing tasks in operations.
Using ML to automatically process unstructured data for institutional investors will generate operational alpha; a level of automation necessary to make data-driven decisions, reduce costs, and become more agile.
The views represented in this commentary are those of its author and do not reflect the opinion of Traders Magazine, Markets Media Group or its staff. Traders Magazine welcomes reader feedback on this column and on all issues relevant to the institutional trading community.
Follow this link:
Machine Learning: Making Sense of Unstructured Data and Automation in Alt Investments - Traders Magazine
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]