Machine learning helps scientists see how the brain adapts to … – The Hub at Johns Hopkins
By Hub staff report
Johns Hopkins scientists have developed a method involving artificial intelligence to visualize and track changes in the strength of synapsesthe connection points through which nerve cells in the brain communicatein live animals. The technique, described in Nature Methods, should lead to a better understanding of how such connections in human brains change with learning, aging, injury, and disease, the scientists say.
"If you want to learn more about how an orchestra plays, you have to watch individual players over time, and this new method does that for synapses in the brains of living animals," says Dwight Bergles, professor in the Department of Neuroscience at the Johns Hopkins University School of Medicine.
Image caption: Thousands of SEP-GluA2 tagged synapses (shown in green) surround a sparsely labeled dendrite (show in magenta) before and after XTC image resolution enhancement. Scale bar is 5 microns.
Image credit: Xu, Y.K.T., Graves, A.R., Coste, G.I. et al. Nat Methods
Bergles co-authored the study with colleagues Adam Charles and Jeremias Sulam, both assistant professors in the Department of Biomedical Engineering, and Richard Huganir, Bloomberg Distinguished Professor at JHU and director of the neuroscience department. All four researchers are members of Johns Hopkins' Kavli Neuroscience Discovery Institute.
Nerve cells transfer information from one cell to another by exchanging chemical messages at synapses, or junctions. In the brain, the authors explain, different life experiences, such as exposure to new environments and learning skills, are thought to induce changes at synapses, strengthening or weakening these connections to allow learning and memory. Understanding how these minute changes occur across the trillions of synapses in our brains is a daunting challenge, but it is central to uncovering how the brain works when healthy and how it is altered by disease.
To determine which synapses change during a particular life event, scientists have long sought better ways to visualize the shifting chemistry of synaptic messaging, necessitated by the high density of synapses in the brain and their small sizetraits that make them extremely hard to visualize even with new state-of-the-art microscopes.
"We needed to go from challenging, blurry, noisy imaging data to extract the signal portions we need to see," Charles says.
To do so, Bergles, Sulam, Charles, Huganir, and their colleagues turned to machine learning, a computational framework that allows flexible development of automatic data processing tools. Machine learning has been successfully applied to many domains across biomedical imaging, and in this case, the scientists leveraged the approach to enhance the quality of images composed of thousands of synapses. Although it can be a powerful tool for automated detection, greatly surpassing human speeds, the system must first be "trained," teaching the algorithm what high quality images of synapses should look like.
In these experiments, the researchers worked with genetically altered mice in which glutamate receptorsthe chemical sensors at synapsesglowed green, or fluoresced, when exposed to light. Because each receptor emits the same amount of light, the amount of fluorescence generated by a synapse in these mice is an indication of the number of synapses, and therefore its strength.
As expected, imaging in the intact brain produced low quality pictures in which individual clusters of glutamate receptors at synapses were difficult to see clearly, let alone to be individually detected and tracked over time. To convert these into higher quality images, the scientists trained a machine learning algorithm with images taken of brain slices (ex vivo) derived from the same type of genetically altered mice. Because these images weren't from living animals, it was possible to produce much higher quality images using a different microscopy technique, as well as low quality imagessimilar to those taken in live animalsof the same views.
This cross-modality data collection framework enabled the team to develop an enhancement algorithm that can produce higher resolution images from low quality ones, similar to the images collected from living mice. In this way, data collected from the intact brain can be significantly enhanced and able to detect and track individual synapses (in the thousands) during multiday experiments.
To follow changes in receptors over time in living mice, the researchers then used microscopy to take repeated images of the same synapses in mice over several weeks. After capturing baseline images, the team placed the animals in a chamber with new sights, smells, and tactile stimulation for a single five-minute period. They then imaged the same area of the brain every other day to see if and how the new stimuli had affected the number of glutamate receptors at synapses.
Although the focus of the work was on developing a set of methods to analyze synapse level changes in many different contexts, the researchers found that this simple change in environment caused a spectrum of alterations in fluorescence across synapses in the cerebral cortex, indicating connections where the strength increased and others where it decreased, with a bias toward strengthening in animals exposed to the novel environment.
The studies were enabled through close collaboration among scientists with distinct expertise, ranging from molecular biology to artificial intelligence, who don't normally work closely together. The researchers are now using this machine learning approach to study synaptic changes in animal models of Alzheimer's disease, and they believe the method could shed new light on synaptic changes that occur in other disease and injury contexts.
"We are really excited to see how and where the rest of the scientific community will take this," Sulam says.
The experiments in this study were conducted by Yu Kang Xu, a PhD student and Kavli Neuroscience Discovery Institute fellow at JHU; Austin Graves, assistant research professor in biomedical engineering at JHU; and Gabrielle Coste, a neuroscience PhD student at JHU. This research was funded by the National Institutes of Health (RO1 RF1MH121539).
Read more:
Machine learning helps scientists see how the brain adapts to ... - The Hub at Johns Hopkins
- Google is experimenting with machine learning-powered age-estimation tech in the US - TechCrunch - August 1st, 2025 [August 1st, 2025]
- Google Will Use Machine Learning to Estimate Users Age and Block Them From Restricted Content and Ads - Adweek - August 1st, 2025 [August 1st, 2025]
- A thermodynamic approach to machine learning: How optimal transport theory can improve generative models - Tech Xplore - August 1st, 2025 [August 1st, 2025]
- Machine Learning Transforms Immunotherapy in Metastatic NSCLC - BIOENGINEER.ORG - August 1st, 2025 [August 1st, 2025]
- Clinical decision support for vestibular diagnosis: large-scale machine learning with lived experience coaching - Nature - August 1st, 2025 [August 1st, 2025]
- Graph theoretic and machine learning approaches in molecular property prediction of bladder cancer therapeutics - Nature - August 1st, 2025 [August 1st, 2025]
- Automotive Battery Management System Market Outlook Report 2025-2034 | AI and Machine Learning Transforming the BMS Technology Landscape - Yahoo.co - August 1st, 2025 [August 1st, 2025]
- Machine learning model predicts radiotherapy response in patients with nasopharyngeal carcinoma - News-Medical - August 1st, 2025 [August 1st, 2025]
- Google is experimenting with machine learning-powered age-estimation tech in the US - Yahoo Finance - August 1st, 2025 [August 1st, 2025]
- Identification and validation of an explainable machine learning model for vascular depression diagnosis in the older adults: a multicenter cohort... - August 1st, 2025 [August 1st, 2025]
- Machine learning-based high-benefit approach versus traditional high-risk approach in statin therapy: the Shizuoka Kokuho database study - Nature - August 1st, 2025 [August 1st, 2025]
- Investigating the Impact of the Stationarity Hypothesis on Heart Failure Detection using Deep Convolutional Scattering Networks and Machine Learning -... - August 1st, 2025 [August 1st, 2025]
- Predicting Sepsis with Machine Learning and Lab-on-a-Chip - Electropages - August 1st, 2025 [August 1st, 2025]
- Classification accuracy of pain intensity induced by leg blood flow restriction during walking using machine learning based on electroencephalography... - August 1st, 2025 [August 1st, 2025]
- Machine learning-based drug-drug interaction prediction: a critical review of models, limitations, and data challenges - Frontiers - August 1st, 2025 [August 1st, 2025]
- AI and Machine Learning - AI and geospatial companies join forces to map Africa - Smart Cities World - July 30th, 2025 [July 30th, 2025]
- Summer research project explores alternative machine learning framework - Mercer University - July 30th, 2025 [July 30th, 2025]
- Unveiling multiscale drivers of wind speed in Michigan using machine learning - Nature - July 30th, 2025 [July 30th, 2025]
- New machine learning tool reveals atomic structure of ultra-thin film materials - Phys.org - July 28th, 2025 [July 28th, 2025]
- Optimizing base fluid composition for PEMFC cooling: A machine learning approach to balance thermal and rheological performance - Nature - July 28th, 2025 [July 28th, 2025]
- Overview: Machine learning in the medical space - Scientist Live - July 28th, 2025 [July 28th, 2025]
- IMD develops a novel machine-learning-based tool to predict urban rainfall trends in India - Research Matters - July 28th, 2025 [July 28th, 2025]
- Unsupervised System 2 Thinking: The Next Leap in Machine Learning with Energy-Based Transformers - MarkTechPost - July 27th, 2025 [July 27th, 2025]
- A machine learning-based approach to predict depression in Chinese older adults with subjective cognitive decline: a longitudinal study - Nature - July 27th, 2025 [July 27th, 2025]
- Machine Learning Identifies Role of Impaired Purine Metabolism in Gout Pathogenesis - HCPLive - July 27th, 2025 [July 27th, 2025]
- Detection of breast cancer using machine learning and explainable artificial intelligence - Nature - July 27th, 2025 [July 27th, 2025]
- Investigation of key ferroptosis-associated genes and potential therapeutic drugs for asthma based on machine learning and regression models - Nature - July 27th, 2025 [July 27th, 2025]
- Predicting postoperative trauma-induced coagulopathy in patients with severe injuries by machine learning - Nature - July 27th, 2025 [July 27th, 2025]
- Machine learning based multi-stage intrusion detection system and feature selection ensemble security in cloud assisted vehicular ad hoc networks -... - July 27th, 2025 [July 27th, 2025]
- Comparative analysis of machine learning models for malaria detection using validated synthetic data: a cost-sensitive approach with clinical domain... - July 27th, 2025 [July 27th, 2025]
- Statistical modelling and forecasting of HIV and anti-retroviral therapy cases by time-series and machine learning models - Nature - July 27th, 2025 [July 27th, 2025]
- Seeing Through the Rust: How Machine Learning is Improving Corrosion Detection - Research Matters - July 27th, 2025 [July 27th, 2025]
- Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S - ACS Publications - July 24th, 2025 [July 24th, 2025]
- Machine learning-based academic performance prediction with explainability for enhanced decision-making in educational institutions - Nature - July 24th, 2025 [July 24th, 2025]
- Can External Validation Tools Can Improve Annotation Quality for LLM-as-a-Judge - Apple Machine Learning Research - July 24th, 2025 [July 24th, 2025]
- How to use learning curves to evaluate the sample size for malaria prediction models developed using machine learning algorithms - Malaria Journal - July 24th, 2025 [July 24th, 2025]
- Development and validation of a dynamic early warning system with time-varying machine learning models for predicting hemodynamic instability in... - July 24th, 2025 [July 24th, 2025]
- Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning -... - July 24th, 2025 [July 24th, 2025]
- Algorithmica Reports 35% Return in First Fiscal Year, Driven by Machine Learning Trading Technology - PR Newswire - July 24th, 2025 [July 24th, 2025]
- New research using machine learning further links increase in earthquakes, quake intensity, in Raton Basin to wastewater injections - The... - July 24th, 2025 [July 24th, 2025]
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]