Machine learning-guided determination of Acinetobacter density in … – Nature.com
A descriptive summary of the physicochemical variables and Acinetobacter density of the waterbodies is presented in Table 1. The mean pH, EC, TDS, and SAL of the waterbodies was 7.760.02, 218.664.76 S/cm, 110.532.36mg/L, and 0.100.00 PSU, respectively. While the average TEMP, TSS, TBS, and DO of the rivers was 17.290.21C, 80.175.09mg/L, 87.515.41 NTU, and 8.820.04mg/L, respectively, the corresponding DO5, BOD, and AD was 4.820.11mg/L, 4.000.10mg/L, and 3.190.03 log CFU/100mL respectively.
The bivariate correlation between paired PVs varied significantly from very weak to perfect/very strong positive or negative correlation (Table 2). In the same manner, the correlation between various PVs and AD varies. For instance, negligible but positive very weak correlation exist between AD and pH (r=0.03, p=0.422), and SAL (r=0.06, p=0.184) as well as very weak inverse (negative) correlation between AD and TDS (r=0.05, p=0.243) and EC (r=0.04, p=0.339). A significantly positive but weak correlation occurs between AD and BOD (r=0.26, p=4.21E10), and TSS (r=0.26, p=1.09E09), and TBS (r=0.26, 1.71E-09) whereas, AD had a weak inverse correlation with DO5 (r=0.39, p=1.31E21). While there was a moderate positive correlation between TEMP and AD (r=0.43, p=3.19E26), a moderate but inverse correlation occurred between AD and DO (r=0.46, 1.26E29).
The predicted AD by the 18 ML regression models varied both in average value and coverage (range) as shown in Fig.1. The average predicted AD ranged from 0.0056 log units by M5P to 3.2112 log unit by SVR. The average AD prediction declined from SVR [3.2112 (1.46464.4399)], DTR [3.1842 (2.23124.3036)], ENR [3.1842 (2.12334.8208)], NNT [3.1836 (1.13994.2936)], BRT [3.1833 (1.68904.3103)], RF [3.1795 (1.35634.4514)], XGB [3.1792 (1.10404.5828)], MARS [3.1790 (1.19014.5000)], LR [3.1786 (2.18954.7951)], LRSS [3.1786 (2.16224.7911)], GBM [3.1738 (1.43284.3036)], Cubist [3.1736 (1.10124.5300)], ELM [3.1714 (2.22364.9017)], KNN [3.1657 (1.49884.5001)], ANET6 [0.6077 (0.04191.1504)], ANET33 [0.6077 (0.09500.8568)], ANET42 [0.6077 (0.06920.8568)], and M5P [0.0056 (0.60240.6916)]. However, in term of range coverage XGB [3.1792 (1.10404.5828)] and Cubist [3.1736 (1.10124.5300)] outshined other models because those models overestimated and underestimated AD at lower and higher values respectively when compared with raw data [3.1865 (14.5611)].
Comparison of ML model-predicted AD in the waterbodies. RAW raw/empirical AD value.
Figure2 represents the explanatory contributions of PVs to AD prediction by the models. The subplot A-R gives the absolute magnitude (representing parameter importance) by which a PV instance changes AD prediction by each model from its mean value presented in the vertical axis. In LR, an absolute change from the mean value of pH, BOD, TSS, DO, SAL, and TEMP corresponded to an absolute change of 0.143, 0.108, 0.069, 0.0045, 0.04, and 0.004 units in the LRs AD prediction response/value. Also, an absolute response flux of 0.135, 0.116, 0.069, 0.057, 0.043, and 0.0001 in AD prediction value was attributed to pH, BOD, TSS, DO. SAL, and TEMP changes, respectively, by LRSS. Similarly, absolute change in DO, BOD, TEMP, TSS, pH, and SAL would achieve 0.155, 0.061. 0.099, 0.144, and 0.297 AD prediction response changes by KNN. In addition, the most contributed or important PV whose change largely influenced AD prediction response was TEMP (decreases or decreases the responses up to 0.218) in RF. Summarily, AD prediction response changes were highest and most significantly influenced by BOD (0.209), pH (0.332), TSS (0.265), TEMP (0.6), TSS (0.233), SAL (0.198), BOD (0.127), BOD (0.11), DO (0.028), pH (0.114), pH (0.14), SAL(0.91), and pH (0.427) in XGB, BTR, NNT, DTR, SVR, M5P, ENR, ANET33, ANNET64, ANNET6, ELM, MARS, and Cubist, respectively.
PV-specific contribution to eighteen ML models forecasting capability of AD in MHWE receiving waterbodies. The average baseline value of PV in the ML is presented on the y-axis. The green/red bars represent the absolute value of each PV contribution in predicting AD.
Table 4 presents the eighteen regression algorithms performance predicting AD given the waterbodies PVs. In terms of MSE, RMSE, and R2, XGB (MSE=0.0059, RMSE=0.0770; R2=0.9912) and Cubist (MSE=0.0117, RMSE=0.1081, R2=0.9827) ranked first and second respectively, to outmatched other models in predicting AD. While MSE and RMSE metrics ranked ANET6 (MSE=0.0172, RMSE=0.1310), ANRT42 (MSE=0.0220, RMSE=0.1483), ANET33 (MSE=0.0253, RMSE=0.1590), M5P (MSE=0.0275, RMSE=0.1657), and RF (MSE=0.0282, RMSE=0.1679) in the 3, 4, 5, 6, and 7 position among the MLs in predicting AD, M5P (R2=0.9589 and RF (R2=0.9584) recorded better performance in term of R-squared metric and ANET6 (MAD=0.0856) and M5P (MAD=0.0863) in term of MAD metric among the 5 models. But Cubist (MAD=0.0437) XGB (MAD=0.0440) in term of MAD metric.
The feature importance of each PV over permutational resampling on the predictive capability of the ML models in predicting AD in the waterbodies is presented in Table 3 and Fig. S1. The identified important variables ranked differently from one model to another, with temperature ranking in the first position by 10/18 of the models. In the 10 algorithms/models, the temperature was responsible for the highest mean RMSE dropout loss, with temperature in RF, XGB, Cubist, BRT, and NNT accounting for 0.4222 (45.90%), 0.4588 (43.00%), 0.5294 (50.82%), 0.3044 (44.87%), and 0.2424 (68.77%) respectively, while 0.1143 (82.31%),0.1384 (83.30%), 0.1059 (57.00%), 0.4656 (50.58%), and 0.2682 (57.58%) RMSE dropout loss was attributed to temperature in ANET42, ANET10, ELM, M5P, and DTR respectively. Temperature also ranked second in 2/18 models, including ANET33 (0.0559, 45.86%) and GBM (0.0793, 21.84%). BOD was another important variable in forecasting AD in the waterbodies and ranked first in 3/18 and second in 8/18 models. While BOD ranked as the first important variable in AD prediction in MARS (0.9343, 182.96%), LR (0.0584, 27.42%), and GBM (0.0812, 22.35%), it ranked second in KNN (0.2660, 42.69%), XGB (0.4119, 38.60); BRT (0.2206, 32.51%), ELM (0.0430, 23.17%), SVR (0.1869, 35.77%), DTR (0.1636, 35.13%), ENR (0.0469, 21.84%) and LRSS (0.0669, 31.65%). SAL rank first in 2/18 (KNN: 0.2799; ANET33: 0.0633) and second in 3/18 (Cubist: 0.3795; ANET42: 0.0946; ANET10: 0.1359) of the models. DO ranked first in 2/18 (ENR [0.0562; 26.19%] and LRSS [0.0899; 42.51%]) and second in 3/18 (RF [0.3240, 35.23%], M5P [0.3704, 40.23%], LR [0.0584, 27.41%]) of the models.
Figure3 shows the residual diagnostics plots of the models comparing actual AD and forecasted AD values by the models. The observed results showed that actual AD and predicted AD value in the case of LR (A), LRSS (B), KNN (C), BRT 9F), GBM (G), NNT (H), DTR (I), SVR (J), ENR (L), ANET33 (M), ANER64 (N), ANET6 (O), ELM (P) and MARS (Q) skewed, and the smoothed trend did not overlap. However, actual AD and predicted AD values experienced more alignment and an approximately overlapped smoothed trend was seen in RF (D), XGB (E), M5P (K), and Cubist (R). Among the models, RF (D) and M5P (K) both overestimated and underestimated predicted AD at lower and higher values, respectively. Whereas XGB and Cubist both overestimated AD value at lower value with XGB closer to the smoothed trend that Cubist. Generally, a smoothed trend overlapping the gradient line is desirable as it shows that a model fits all values accurately/precisely.
Comparison between actual and predicted AD by the eighteen ML models.
The comparison of the partial-dependence profiles of PVs on AD prediction by the 18 modes using a unitary model by PVs presentation for clarity is shown in Figs. S2S7. The partial-dependence profiles existed in i. a form where an average increase in AD prediction accompanied a PV increase (upwards trend), (ii) inverse trend, where an increase in a PV resulted in a decline AD prediction, (iii) horizontal trend, where increase/decrease in a PV yielded no effects on AD prediction, and (iv) a mixed trend, where the shape switch between 2 or more of iiii. The models' response varied with a change in any of the PV, especially changes beyond the breakpoints that could decrease or increase AD prediction response.
The partial-dependence profile (PDP) of DO for models has a downtrend either from the start or after a breakpoint(s) of nature ii and iv, except for ELM which had an upward trend (i, Fig. S2). TEMP PDP had an upward trend (i and iv) and, in most cases filled with one or more breakpoints but had a horizontal trend in LRSS (Fig. S3). SAL had a PDP of a typical downward trend (ii and iv) across all the models (Fig. S4). While pH displayed a typical downtrend PDP in LR, LRSS, NNT, ENR, ANN6, a downtrend filled with different breakpoint(s) was seen in RF, M5P, and SVR; other models showed a typical upward trend (i and iv) filled with breakpoint(s) (Fig. S5). The PDP of TSS showed an upward trend that returned to a plateau (DTR, ANN33, M5P, GBM, RF, XFB, BRT), after a final breakpoint or a declining trend (ANNT6, SVR; Fig. S6). The BOD PDP generally had an upward trend filled with breakpoint(s) in most models (Fig. S7).
Continued here:
Machine learning-guided determination of Acinetobacter density in ... - Nature.com
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]
- Machine learning for Parkinsons disease: a comprehensive review of datasets, algorithms, and challenges - Nature - July 4th, 2025 [July 4th, 2025]
- Cervical cancer prediction using machine learning models based on routine blood analysis - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing anomaly detection in IoT-driven factories using Logistic Boosting, Random Forest, and SVM: A comparative machine learning approach - Nature - July 4th, 2025 [July 4th, 2025]
- Predicting car accident severity in Northwest Ethiopia: a machine learning approach leveraging driver, environmental, and road conditions - Nature - July 4th, 2025 [July 4th, 2025]
- Sensormatic Solutions Adds Machine Learning to Shrink Analyzer - Ink World magazine - July 4th, 2025 [July 4th, 2025]
- Exploring the link between the ZJU index and sarcopenia in adults aged 2059 using NHANES and machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]