Machine learning-guided determination of Acinetobacter density in … – Nature.com
A descriptive summary of the physicochemical variables and Acinetobacter density of the waterbodies is presented in Table 1. The mean pH, EC, TDS, and SAL of the waterbodies was 7.760.02, 218.664.76 S/cm, 110.532.36mg/L, and 0.100.00 PSU, respectively. While the average TEMP, TSS, TBS, and DO of the rivers was 17.290.21C, 80.175.09mg/L, 87.515.41 NTU, and 8.820.04mg/L, respectively, the corresponding DO5, BOD, and AD was 4.820.11mg/L, 4.000.10mg/L, and 3.190.03 log CFU/100mL respectively.
The bivariate correlation between paired PVs varied significantly from very weak to perfect/very strong positive or negative correlation (Table 2). In the same manner, the correlation between various PVs and AD varies. For instance, negligible but positive very weak correlation exist between AD and pH (r=0.03, p=0.422), and SAL (r=0.06, p=0.184) as well as very weak inverse (negative) correlation between AD and TDS (r=0.05, p=0.243) and EC (r=0.04, p=0.339). A significantly positive but weak correlation occurs between AD and BOD (r=0.26, p=4.21E10), and TSS (r=0.26, p=1.09E09), and TBS (r=0.26, 1.71E-09) whereas, AD had a weak inverse correlation with DO5 (r=0.39, p=1.31E21). While there was a moderate positive correlation between TEMP and AD (r=0.43, p=3.19E26), a moderate but inverse correlation occurred between AD and DO (r=0.46, 1.26E29).
The predicted AD by the 18 ML regression models varied both in average value and coverage (range) as shown in Fig.1. The average predicted AD ranged from 0.0056 log units by M5P to 3.2112 log unit by SVR. The average AD prediction declined from SVR [3.2112 (1.46464.4399)], DTR [3.1842 (2.23124.3036)], ENR [3.1842 (2.12334.8208)], NNT [3.1836 (1.13994.2936)], BRT [3.1833 (1.68904.3103)], RF [3.1795 (1.35634.4514)], XGB [3.1792 (1.10404.5828)], MARS [3.1790 (1.19014.5000)], LR [3.1786 (2.18954.7951)], LRSS [3.1786 (2.16224.7911)], GBM [3.1738 (1.43284.3036)], Cubist [3.1736 (1.10124.5300)], ELM [3.1714 (2.22364.9017)], KNN [3.1657 (1.49884.5001)], ANET6 [0.6077 (0.04191.1504)], ANET33 [0.6077 (0.09500.8568)], ANET42 [0.6077 (0.06920.8568)], and M5P [0.0056 (0.60240.6916)]. However, in term of range coverage XGB [3.1792 (1.10404.5828)] and Cubist [3.1736 (1.10124.5300)] outshined other models because those models overestimated and underestimated AD at lower and higher values respectively when compared with raw data [3.1865 (14.5611)].
Comparison of ML model-predicted AD in the waterbodies. RAW raw/empirical AD value.
Figure2 represents the explanatory contributions of PVs to AD prediction by the models. The subplot A-R gives the absolute magnitude (representing parameter importance) by which a PV instance changes AD prediction by each model from its mean value presented in the vertical axis. In LR, an absolute change from the mean value of pH, BOD, TSS, DO, SAL, and TEMP corresponded to an absolute change of 0.143, 0.108, 0.069, 0.0045, 0.04, and 0.004 units in the LRs AD prediction response/value. Also, an absolute response flux of 0.135, 0.116, 0.069, 0.057, 0.043, and 0.0001 in AD prediction value was attributed to pH, BOD, TSS, DO. SAL, and TEMP changes, respectively, by LRSS. Similarly, absolute change in DO, BOD, TEMP, TSS, pH, and SAL would achieve 0.155, 0.061. 0.099, 0.144, and 0.297 AD prediction response changes by KNN. In addition, the most contributed or important PV whose change largely influenced AD prediction response was TEMP (decreases or decreases the responses up to 0.218) in RF. Summarily, AD prediction response changes were highest and most significantly influenced by BOD (0.209), pH (0.332), TSS (0.265), TEMP (0.6), TSS (0.233), SAL (0.198), BOD (0.127), BOD (0.11), DO (0.028), pH (0.114), pH (0.14), SAL(0.91), and pH (0.427) in XGB, BTR, NNT, DTR, SVR, M5P, ENR, ANET33, ANNET64, ANNET6, ELM, MARS, and Cubist, respectively.
PV-specific contribution to eighteen ML models forecasting capability of AD in MHWE receiving waterbodies. The average baseline value of PV in the ML is presented on the y-axis. The green/red bars represent the absolute value of each PV contribution in predicting AD.
Table 4 presents the eighteen regression algorithms performance predicting AD given the waterbodies PVs. In terms of MSE, RMSE, and R2, XGB (MSE=0.0059, RMSE=0.0770; R2=0.9912) and Cubist (MSE=0.0117, RMSE=0.1081, R2=0.9827) ranked first and second respectively, to outmatched other models in predicting AD. While MSE and RMSE metrics ranked ANET6 (MSE=0.0172, RMSE=0.1310), ANRT42 (MSE=0.0220, RMSE=0.1483), ANET33 (MSE=0.0253, RMSE=0.1590), M5P (MSE=0.0275, RMSE=0.1657), and RF (MSE=0.0282, RMSE=0.1679) in the 3, 4, 5, 6, and 7 position among the MLs in predicting AD, M5P (R2=0.9589 and RF (R2=0.9584) recorded better performance in term of R-squared metric and ANET6 (MAD=0.0856) and M5P (MAD=0.0863) in term of MAD metric among the 5 models. But Cubist (MAD=0.0437) XGB (MAD=0.0440) in term of MAD metric.
The feature importance of each PV over permutational resampling on the predictive capability of the ML models in predicting AD in the waterbodies is presented in Table 3 and Fig. S1. The identified important variables ranked differently from one model to another, with temperature ranking in the first position by 10/18 of the models. In the 10 algorithms/models, the temperature was responsible for the highest mean RMSE dropout loss, with temperature in RF, XGB, Cubist, BRT, and NNT accounting for 0.4222 (45.90%), 0.4588 (43.00%), 0.5294 (50.82%), 0.3044 (44.87%), and 0.2424 (68.77%) respectively, while 0.1143 (82.31%),0.1384 (83.30%), 0.1059 (57.00%), 0.4656 (50.58%), and 0.2682 (57.58%) RMSE dropout loss was attributed to temperature in ANET42, ANET10, ELM, M5P, and DTR respectively. Temperature also ranked second in 2/18 models, including ANET33 (0.0559, 45.86%) and GBM (0.0793, 21.84%). BOD was another important variable in forecasting AD in the waterbodies and ranked first in 3/18 and second in 8/18 models. While BOD ranked as the first important variable in AD prediction in MARS (0.9343, 182.96%), LR (0.0584, 27.42%), and GBM (0.0812, 22.35%), it ranked second in KNN (0.2660, 42.69%), XGB (0.4119, 38.60); BRT (0.2206, 32.51%), ELM (0.0430, 23.17%), SVR (0.1869, 35.77%), DTR (0.1636, 35.13%), ENR (0.0469, 21.84%) and LRSS (0.0669, 31.65%). SAL rank first in 2/18 (KNN: 0.2799; ANET33: 0.0633) and second in 3/18 (Cubist: 0.3795; ANET42: 0.0946; ANET10: 0.1359) of the models. DO ranked first in 2/18 (ENR [0.0562; 26.19%] and LRSS [0.0899; 42.51%]) and second in 3/18 (RF [0.3240, 35.23%], M5P [0.3704, 40.23%], LR [0.0584, 27.41%]) of the models.
Figure3 shows the residual diagnostics plots of the models comparing actual AD and forecasted AD values by the models. The observed results showed that actual AD and predicted AD value in the case of LR (A), LRSS (B), KNN (C), BRT 9F), GBM (G), NNT (H), DTR (I), SVR (J), ENR (L), ANET33 (M), ANER64 (N), ANET6 (O), ELM (P) and MARS (Q) skewed, and the smoothed trend did not overlap. However, actual AD and predicted AD values experienced more alignment and an approximately overlapped smoothed trend was seen in RF (D), XGB (E), M5P (K), and Cubist (R). Among the models, RF (D) and M5P (K) both overestimated and underestimated predicted AD at lower and higher values, respectively. Whereas XGB and Cubist both overestimated AD value at lower value with XGB closer to the smoothed trend that Cubist. Generally, a smoothed trend overlapping the gradient line is desirable as it shows that a model fits all values accurately/precisely.
Comparison between actual and predicted AD by the eighteen ML models.
The comparison of the partial-dependence profiles of PVs on AD prediction by the 18 modes using a unitary model by PVs presentation for clarity is shown in Figs. S2S7. The partial-dependence profiles existed in i. a form where an average increase in AD prediction accompanied a PV increase (upwards trend), (ii) inverse trend, where an increase in a PV resulted in a decline AD prediction, (iii) horizontal trend, where increase/decrease in a PV yielded no effects on AD prediction, and (iv) a mixed trend, where the shape switch between 2 or more of iiii. The models' response varied with a change in any of the PV, especially changes beyond the breakpoints that could decrease or increase AD prediction response.
The partial-dependence profile (PDP) of DO for models has a downtrend either from the start or after a breakpoint(s) of nature ii and iv, except for ELM which had an upward trend (i, Fig. S2). TEMP PDP had an upward trend (i and iv) and, in most cases filled with one or more breakpoints but had a horizontal trend in LRSS (Fig. S3). SAL had a PDP of a typical downward trend (ii and iv) across all the models (Fig. S4). While pH displayed a typical downtrend PDP in LR, LRSS, NNT, ENR, ANN6, a downtrend filled with different breakpoint(s) was seen in RF, M5P, and SVR; other models showed a typical upward trend (i and iv) filled with breakpoint(s) (Fig. S5). The PDP of TSS showed an upward trend that returned to a plateau (DTR, ANN33, M5P, GBM, RF, XFB, BRT), after a final breakpoint or a declining trend (ANNT6, SVR; Fig. S6). The BOD PDP generally had an upward trend filled with breakpoint(s) in most models (Fig. S7).
Continued here:
Machine learning-guided determination of Acinetobacter density in ... - Nature.com
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]