Machine Learning Engineer: Challenges and Changes Facing the Profession – Dice Insights
Last year, the fastest-growing job title in the world was that of the machine learning (ML) engineer, and this looks set to continue for the foreseeable future. According to Indeed, the average base salary of an ML engineer in the US is $146,085, and the number of machine learning engineer openings grew by 344% between 2015 and 2018. Machine learning engineers dominate the job postings around artificial intelligence (A.I.), with 94% of job advertisements that contain AI or ML terminology targeting machine learning engineers specifically.
This demonstrates that organizations understand how profound an effect machine learning promises to have on businesses and society. AI and ML are predicted to drive a Fourth Industrial Revolution that will see vast improvements in global productivity and open up new avenues for innovation; by 2030, its predicted that the global economy will be$15.7 trillion richersolely because of developments from these technologies.
The scale of demand for machine learning engineers is also unsurprising given how complex the role is. The goal of machine learning engineers is todeploy and manage machine learning modelsthat process and learn from the patterns and structures in vast quantities of data, into applications running in production, to unlock real business value while ensuring compliance with corporate governance standards.
To do this, machine learning engineers have to sit at the intersection of three complex disciplines. The first discipline is data science, which is where the theoretical models that inform machine learning are created; the second discipline is DevOps, which focuses on the infrastructure and processes for scaling the operationalization of applications; and the third is software engineering, which is needed to make scalable and reliable code to run machine learning programs.
Its the fact that machine learning engineers have to be at ease in the language of data science, software engineering, and DevOps that makes them so scarceand their value to organizations so great. A machine learning engineer has to have a deep skill-set; they must know multiple programming languages, have a very strong grasp of mathematics, and be able to understand andapply theoretical topics in computer science and statistics. They have to be comfortable with taking state-of-the-art models, which may only work in a specialized environment, andconverting them into robust and scalable systems that are fit for a business environment.
As a burgeoning occupation, the role of a machine learning engineer is constantly evolving. The tools and capabilities that these engineers have in 2020 are radically different from those they had available in 2015, and this is set to continue evolve as the specialism matures. One of the best ways to understand what the role of a machine learning engineer means to an organization is to look at the challenges they face in practice, and how they evolve over time.
Four major challenges that every machine learning engineer has to deal with are data provenance, good data, reproducibility, and model monitoring.
Across a models development and deployment lifecycle, theres interaction between a variety of systems and teams. This results in a highly complex chain of data from a variety of sources. At the same time, there is a greater demand than ever for data to be audited, and there to be a clear lineage of its organizational uses. This is increasingly a priority for regulators, with financial regulators now demandingthat all machine learning data be stored for seven years for auditing purposes.
This does not only make the data and metadata used in models more complex, but it also makes the interactions between the constituent pieces of data far more complex. This means machine learning engineers need to put the right infrastructure in place to ensure the right data and metadata is accessible, all while making sure it is properly organized.
Membership has its benefits. Sign up for a free Dice profile, add your resume, discover great career insights and set your tech career in motion. Register now
In 2016, it was estimated that the US alonelost $3.1 trillionto bad datadata thats improperly formatted, duplicated, or incomplete. People and businesses across all sectors lose time and money because of this, but in a job that requires building and running accurate models reliant on input data, these issues can seriously jeopardize projects.
IBM estimates that around80 percent of a data scientists timeis spentfinding, cleaning up, and organizing the data they put into their models. Over time, however, increasingly sophisticated error and anomaly detection programs will likely be used to comb through datasets and screen out information that is incomplete or inaccurate.
This means that, as time goes on and machine learning capabilities continue to develop, well see machine learning engineers have more tools in their belt to clean up the information their programs use, and thus be able to focus more time spent on putting together ML programs themselves.
Reproducibility is often defined as the ability to be able to keep a snapshot of the state of a specific machine learning model, and being able to reproduce the same experiment with the exact same results regardless of the time and location. This involves a great level of complexity, given that machine learning requires reproducibility of three components: 1) code, 2) artifacts, and 3) data. If one of these change, then the result will change.
To add to this complexity, its also necessary to keep reproducibility of entire pipelines that may consist of two or more of these atomic steps, which introduces an exponential level of complexity. For machine learning, reproducibility is important because it lets engineers and data scientists know that the results of a model can be relied upon when they are deployed live, as they will be the same if they are run today as if they were run in two years.
Designing infrastructure for machine learning that is reproducible is a huge challenge. It will continue to be a thorn in the side of machine learning engineers for many years to come. One thing that may make this easier in coming years is the rise of universally accepted frameworks for machine learning test environments, which will provide a consistent barometer for engineers to measure their efforts against.
Its easy to forget that the lifecycle of a machine learning model only begins when its deployed to production. Consequently, a machine learning engineer not only needs to do the work of coding, testing, and deploying a model, but theyll have to also develop the right tools to monitor it.
The production environment of a model can often throw up scenarios the machine learning engineer didnt anticipate when they were creating it. Without monitoring and intervention after deployment, its likely that a model can end up being rendered dysfunctional or produce skewed results by unexpected data. Without accurate monitoring, results can often slowly drift away from what is expected due to input data becoming misaligned with the data a model was trained with, producing less and less effective or logical results.
Adversarial attacks on models, often far more sophisticated than tweets and a chatbot, are of increasing concern, and it is clear that monitoring by machine learning engineers is needed to stop a model being rendered counterproductive by unexpected data. As more machine learning models are deployed, and as more economic output becomes dependent upon these models, this challenge is only going to grow in prominence for machine learning engineers going forward.
One of the most exciting things about the role of the machine learning engineer is that its a job thats still being defined, and still faces so many open problems. That means machine learning engineers get the thrill of working in a constantly changing field that deals with cutting-edge problems.
Challenges such as data quality may be problems we can make major progress towards in the coming years. Other challenges, such monitoring, look set to become more pressing in the more immediate future. Given the constant flux of machine learning engineering as an occupation, its of little wonder that curiosity and an innovative mindset are essential qualities for this relatively new profession.
Alex Housley is CEO ofSeldon.
Read the original here:
Machine Learning Engineer: Challenges and Changes Facing the Profession - Dice Insights
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]