Machine Learning Engineer: Challenges and Changes Facing the Profession – Dice Insights
Last year, the fastest-growing job title in the world was that of the machine learning (ML) engineer, and this looks set to continue for the foreseeable future. According to Indeed, the average base salary of an ML engineer in the US is $146,085, and the number of machine learning engineer openings grew by 344% between 2015 and 2018. Machine learning engineers dominate the job postings around artificial intelligence (A.I.), with 94% of job advertisements that contain AI or ML terminology targeting machine learning engineers specifically.
This demonstrates that organizations understand how profound an effect machine learning promises to have on businesses and society. AI and ML are predicted to drive a Fourth Industrial Revolution that will see vast improvements in global productivity and open up new avenues for innovation; by 2030, its predicted that the global economy will be$15.7 trillion richersolely because of developments from these technologies.
The scale of demand for machine learning engineers is also unsurprising given how complex the role is. The goal of machine learning engineers is todeploy and manage machine learning modelsthat process and learn from the patterns and structures in vast quantities of data, into applications running in production, to unlock real business value while ensuring compliance with corporate governance standards.
To do this, machine learning engineers have to sit at the intersection of three complex disciplines. The first discipline is data science, which is where the theoretical models that inform machine learning are created; the second discipline is DevOps, which focuses on the infrastructure and processes for scaling the operationalization of applications; and the third is software engineering, which is needed to make scalable and reliable code to run machine learning programs.
Its the fact that machine learning engineers have to be at ease in the language of data science, software engineering, and DevOps that makes them so scarceand their value to organizations so great. A machine learning engineer has to have a deep skill-set; they must know multiple programming languages, have a very strong grasp of mathematics, and be able to understand andapply theoretical topics in computer science and statistics. They have to be comfortable with taking state-of-the-art models, which may only work in a specialized environment, andconverting them into robust and scalable systems that are fit for a business environment.
As a burgeoning occupation, the role of a machine learning engineer is constantly evolving. The tools and capabilities that these engineers have in 2020 are radically different from those they had available in 2015, and this is set to continue evolve as the specialism matures. One of the best ways to understand what the role of a machine learning engineer means to an organization is to look at the challenges they face in practice, and how they evolve over time.
Four major challenges that every machine learning engineer has to deal with are data provenance, good data, reproducibility, and model monitoring.
Across a models development and deployment lifecycle, theres interaction between a variety of systems and teams. This results in a highly complex chain of data from a variety of sources. At the same time, there is a greater demand than ever for data to be audited, and there to be a clear lineage of its organizational uses. This is increasingly a priority for regulators, with financial regulators now demandingthat all machine learning data be stored for seven years for auditing purposes.
This does not only make the data and metadata used in models more complex, but it also makes the interactions between the constituent pieces of data far more complex. This means machine learning engineers need to put the right infrastructure in place to ensure the right data and metadata is accessible, all while making sure it is properly organized.
Membership has its benefits. Sign up for a free Dice profile, add your resume, discover great career insights and set your tech career in motion. Register now
In 2016, it was estimated that the US alonelost $3.1 trillionto bad datadata thats improperly formatted, duplicated, or incomplete. People and businesses across all sectors lose time and money because of this, but in a job that requires building and running accurate models reliant on input data, these issues can seriously jeopardize projects.
IBM estimates that around80 percent of a data scientists timeis spentfinding, cleaning up, and organizing the data they put into their models. Over time, however, increasingly sophisticated error and anomaly detection programs will likely be used to comb through datasets and screen out information that is incomplete or inaccurate.
This means that, as time goes on and machine learning capabilities continue to develop, well see machine learning engineers have more tools in their belt to clean up the information their programs use, and thus be able to focus more time spent on putting together ML programs themselves.
Reproducibility is often defined as the ability to be able to keep a snapshot of the state of a specific machine learning model, and being able to reproduce the same experiment with the exact same results regardless of the time and location. This involves a great level of complexity, given that machine learning requires reproducibility of three components: 1) code, 2) artifacts, and 3) data. If one of these change, then the result will change.
To add to this complexity, its also necessary to keep reproducibility of entire pipelines that may consist of two or more of these atomic steps, which introduces an exponential level of complexity. For machine learning, reproducibility is important because it lets engineers and data scientists know that the results of a model can be relied upon when they are deployed live, as they will be the same if they are run today as if they were run in two years.
Designing infrastructure for machine learning that is reproducible is a huge challenge. It will continue to be a thorn in the side of machine learning engineers for many years to come. One thing that may make this easier in coming years is the rise of universally accepted frameworks for machine learning test environments, which will provide a consistent barometer for engineers to measure their efforts against.
Its easy to forget that the lifecycle of a machine learning model only begins when its deployed to production. Consequently, a machine learning engineer not only needs to do the work of coding, testing, and deploying a model, but theyll have to also develop the right tools to monitor it.
The production environment of a model can often throw up scenarios the machine learning engineer didnt anticipate when they were creating it. Without monitoring and intervention after deployment, its likely that a model can end up being rendered dysfunctional or produce skewed results by unexpected data. Without accurate monitoring, results can often slowly drift away from what is expected due to input data becoming misaligned with the data a model was trained with, producing less and less effective or logical results.
Adversarial attacks on models, often far more sophisticated than tweets and a chatbot, are of increasing concern, and it is clear that monitoring by machine learning engineers is needed to stop a model being rendered counterproductive by unexpected data. As more machine learning models are deployed, and as more economic output becomes dependent upon these models, this challenge is only going to grow in prominence for machine learning engineers going forward.
One of the most exciting things about the role of the machine learning engineer is that its a job thats still being defined, and still faces so many open problems. That means machine learning engineers get the thrill of working in a constantly changing field that deals with cutting-edge problems.
Challenges such as data quality may be problems we can make major progress towards in the coming years. Other challenges, such monitoring, look set to become more pressing in the more immediate future. Given the constant flux of machine learning engineering as an occupation, its of little wonder that curiosity and an innovative mindset are essential qualities for this relatively new profession.
Alex Housley is CEO ofSeldon.
Read the original here:
Machine Learning Engineer: Challenges and Changes Facing the Profession - Dice Insights
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]