Machine Learning Clarifies Stress-Based Degradation of Biosimilars – The Center for Biosimilars
Machine learning shows promise as a complementary approach to chromatographic (mixture separation) techniques for assessing biosimilarity and stability, according to a recent study.
Investigators evaluated machine learning vs chromatographic analysis in the study of 3 trastuzumab biosimilars and their reference product (Herceptin) under control and stress conditions. They concluded the machine learning results correlated with the chromatographic data and revealed patterns elucidating the effects of pH and thermal stress conditions.
Trastuzumab, a monoclonal antibody to human epidermal growth factor receptor 2 (HER2), is approved as a treatment for metastatic breast cancer, early breast cancer, and metastatic gastric cancer. The investigators found that the biosimilars showed high similarity under control conditions, but differences in degradation patterns were detected underforced degradation conditions in the study.
First, physicochemical characteristics of the reference product and biosimilar trastuzumab products (approved for use in Egypt; and referred to as B1, B2, and B3 in the study) were determined by size exclusion chromatography, cation exchange chromatography, and peptide mapping. The biologics were evaluated under control conditions and under pH and thermal stress. The investigators then used unsupervised machine learning techniques to find patterns in the chromatographic data.
Chromatographic Analysis
The authors said primary structure and size and charge variants are quality attributes expected to affect the quality, safety, and efficacy of biologic drugs including trastuzumab. These attributes were similar in the biosimilars and reference product under control conditions, the authors found.
Thermal and pH stress, the authors noted, are among the most studied stress conditions in forced degradation studies due to their direct effect on the size and charge variant profiles of [monoclonal antibodies] mAbs through deamidation and oxidation. Under thermal and pH stress, the investigators did find differences in the degradation of the different products.
Size variants
Based on size exclusion chromatography, B2 and B3 showed a tendency to form high- and low-molecular weight variants under acidic and basic stress, and B2 showed 83% degradation by the 2-week time point under acidic stress. Under thermal stress, B3 showed the greatest degradation, 39% after 2 weeks.
Charge variants
Under acidic stress, the products varied from 19.9% degradation of the main variant of the reference product at 2 weeks to 93% for B2. Under basic stress, all samples showed a comparable increase in abundance of acidic variants. Under thermal stress, the charge variant distribution of B2 and B3 were similar to charge variant distribution for the reference product, while B1 showed a greater abundance of acidic variants.
Principal Component Analysis
The investigators used unsupervised machine learning techniques, which find patterns in data with no prior training or predefined subcategories. Principal component analysis (PCA) is a method for reducing complexity in high-dimensional data to a small number of components that explain the greatest percentage of the variance in the data set.
The authors plotted size exclusion chromatography and cation exchange chromatography data on 2-dimensional coordinates representing the 2 components (PC1 and PC2) that explained the most variance to identify patterns in the data. Primary component analysis of chromatographic and peptide mapping data of the control samples showed no outliers, which the authors said supports biosimilarity of the products.
The plot of control and acidic stressed samples showed that the control samples were separated along the primary component 1 (PC1) axis, while the stressed samples were distributed along the PC2 axis. Samples of the same product were clustered relevantly close to each other, the authors said, and their PCA results on control and acidic-stressed samples suggested 41% of the variance in the data was due to the applied stress, and 25% was due to inherent differences in the chromatographic profiles of the products.
Clustering Analysis
The investigators also used 2 clustering techniques, k-means and density-based spatial clustering of applications with noise (DBSCAN), on the data from the top 2 PCs from their primary component analysis. According to the authors, cluster analysis is an unsupervised exploratory technique aiming to find natural grouping in data so that items in the same cluster are more similar to each other than to those from different clusters.
Due to the inherent variability and large number of possible structural variants of monoclonal antibodies, the authors said, machine learningaided approaches have great value for assessing their critical quality attributes. They cited previous research using PCA to reveal patterns in the data on biosimilarity and stability of other biologics, recombinant human growth hormone and infliximab.
K-means clustering of the unstressed samples segregated the products into 3 clusters, with the reference product and B2 each forming their own cluster, and B1 and B3 allocated to the same cluster. DBSCAN segregated each product to its own cluster.
K-means clustering was able to separate control and pH-stressed samples into different clusters, although B2 control samples were clustered with the stressed reference product and B3 samples. Cluster analysis suggested B3 was most similar to the reference product under acidic stress, while B2 was most similar under thermal stress, and all products had a similar response to basic pH stress. The greatest variability between control samples was between the reference product and B2.
Finally, application of principal component and clustering analyses to the collective data set from all the applied chromatographic techniques supported biosimilarity of the products, the authors said. This principal component analysis identified no samples that were significantly different from the others; k-means identified 3 clusters (reference product, B1 + B3, and B2), and DBSCAN identified 4 clusters, one containing each product.
The authors concluded their results supported the biosimilarity of the products analyzed, and highlighted that regarding the charge and size profiles of the studied products, B2 showed higher variability (than B1 and B3) compared to HC under both control and stress conditions. They said that the chromatographic fingerprints and machine learning results were correlated and were able to reveal patterns related to the effect of different stress conditions on the different investigated products. They recommended future studies explore other machine learning tools to interpret physicochemical data on biologic products.
For Further Reading
The European Medicines Authority reports on a pilot experiment in tailoring development of biosimilars, or eliminating unnecessary testing, and the World Health Organization develops guidelines to support the tailoring concept.
Reference
Shatat SM, Al-Ghobashy MA, Fathalla FA, Abbas SS, Eltanany BM. Coupling of trastuzumab chromatographic profiling with machine learning tools: a complementary approach for biosimilarity and stability assessment. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1184:122976. doi:10.1016/j.jchromb.2021.122976
Read more:
Machine Learning Clarifies Stress-Based Degradation of Biosimilars - The Center for Biosimilars
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]
- Machine learning analysis reveals tumor heterogeneity and stromal-immune niches in breast cancer - Nature - September 6th, 2025 [September 6th, 2025]
- Identification of Postoperative Weight Loss Trajectories and Development of a Machine Learning-Based Tool for Predicting Malnutrition in Gastric... - September 6th, 2025 [September 6th, 2025]
- The Relationship Between Number of Pregnancies and Serum 25-Hydroxyvitamin D Levels in Women with a Prior Pregnancy: A Cross - Sectional Analysis,... - September 6th, 2025 [September 6th, 2025]
- Tohoku University Researchers Use Machine Learning to Identify Factors Improving Nickel-Based Catalysts for CO Methanation - geneonline.com - September 6th, 2025 [September 6th, 2025]
- Combining machine learning predictions for Galaxy Payroll Group Limited - Quarterly Growth Report & AI Forecast Swing Trade Picks - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast CLSKW recovery - 2025 Breakouts & Breakdowns & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Granite Real Estate Investment Trust recovery - July 2025 Spike Watch & Growth Focused Stock Reports - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VERU recovery - July 2025 Intraday Action & AI Forecasted Entry/Exit Points - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VCI Global Limited recovery - Market Rally & Expert-Curated Trade Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for AutoNation Inc. - Weekly Trend Summary & Weekly Breakout Watchlists - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for PLXS - Options Play & Fast Gain Stock Trading Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Valens Semiconductor Ltd. recovery - July 2025 Action & Free Growth Oriented Trading Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Improve cost visibility of Machine Learning workloads on Amazon EKS with AWS Split Cost Allocation Data - Amazon Web Services - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast LFT.PRA recovery - Weekly Trade Recap & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast TEAM recovery - 2025 Pullback Review & Free Weekly Chart Analysis and Trade Guides - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for MSBIP - Weekly Profit Analysis & AI Powered Market Entry Strategies - Newser - September 5th, 2025 [September 5th, 2025]
- Revolutionizing Antibody Discovery with Machine Learning - BIOENGINEER.ORG - September 5th, 2025 [September 5th, 2025]
- The good and bad of machine learning | Letters - The Guardian - September 3rd, 2025 [September 3rd, 2025]
- I'm a machine learning engineer at Amazon who anticipated the ML boom. Here's my advice for staying ahead. - AOL.com - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Dogwood Therapeutics Inc. - July 2025 Breakouts & Weekly Setup with High ROI Potential - Newser - September 3rd, 2025 [September 3rd, 2025]
- Phenotyping valvular heart diseases using the lens of unsupervised machine learning: a scoping review - Nature - September 3rd, 2025 [September 3rd, 2025]
- Students use machine learning to track and protect whale populations - Technology Org - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Triller Group Inc. Equity Warrant - Gap Up & Weekly High Conviction Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for DallasNews Corporation - Quarterly Trade Report & Technical Entry and Exit Tips - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for System1 Inc. - Weekly Gains Summary & Risk Adjusted Swing Trade Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- Unlocking the impossible without compromising on creative control: iZotope Ozone 12 adds new machine learning modules and a more musician-friendly AI... - September 3rd, 2025 [September 3rd, 2025]
- What machine learning models say about SLND.WS - Quarterly Trade Report & Technical Entry and Exit Tips - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Chemed Corporation - Weekly Stock Recap & Growth Focused Entry Reports - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for TAP.A - Earnings Growth Report & Entry Point Confirmation Alerts - Newser - September 3rd, 2025 [September 3rd, 2025]
- Bridging known and unknown dynamics by transformer-based machine-learning inference from sparse observations - Nature - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Inseego Corp. - July 2025 Retail & Technical Confirmation Trade Alerts - Newser - September 3rd, 2025 [September 3rd, 2025]
- Can machine learning forecast Aditxt Inc. recovery - July 2025 Update & Expert Curated Trade Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- I'm a machine learning engineer at Amazon who anticipated the ML boom. Here's my advice for staying ahead. - Business Insider - September 1st, 2025 [September 1st, 2025]
- Machine learning climbs the Jacobs Ladder of optoelectronic properties - Nature - September 1st, 2025 [September 1st, 2025]
- Predicting factors associated with anxiety by patients undergoing treatment for infectious diseases using a random-forest machine learning approach -... - September 1st, 2025 [September 1st, 2025]
- Hideo Kojima used "an AI machine learning rig" to painstakingly download his celebrity friends to Death Stranding 2, but he wasn't happy... - September 1st, 2025 [September 1st, 2025]
- Fibro predict a machine learning risk score for advanced liver fibrosis in the general population using Israeli electronic health records - Nature - September 1st, 2025 [September 1st, 2025]
- Machine learning for preventing stillbirths: is it possible to transform data into life-saving insights? - BMC Pregnancy and Childbirth - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Kura Sushi USA Inc. recovery - 2025 Fundamental Recap & AI Based Buy and Sell Signals - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for China Liberal Education Holdings Limited - Weekly Profit Recap & Weekly Breakout Watchlists - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Tyson Foods Inc. recovery - 2025 Trade Ideas & Smart Swing Trading Techniques - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast GLBZ recovery - July 2025 Movers & AI Based Buy and Sell Signals - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about Sypris Solutions Inc. - Market Performance Recap & Real-Time Volume Trigger Notifications - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about Astria Therapeutics Inc. - July 2025 News Drivers & Real-Time Buy Signal Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast CRTO recovery - July 2025 Analyst Calls & Growth Focused Investment Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Exelon Corporation recovery - Exit Point & Pattern Based Trade Signal System - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about OFIX - Bond Market & Long-Term Safe Investment Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Beneficient recovery - Weekly Trade Recap & Breakout Confirmation Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast BTBDW recovery - 2025 Geopolitical Influence & Weekly High Momentum Picks - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Tri Pointe Homes Inc. recovery - July 2025 WrapUp & Free Long-Term Investment Growth Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast TeraWulf Inc. recovery - Market Movement Recap & Community Supported Trade Ideas - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for Alset Inc. - 2025 Technical Patterns & Precise Buy Zone Identification - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Exelon Corporation recovery - 2025 Bull vs Bear & Smart Allocation Stock Reports - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Token Cat Limited Depositary Receipt recovery - 2025 Price Action Summary & Breakout Confirmation Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for BT Brands Inc. - Market Performance Recap & Verified Technical Trade Signals - Newser - September 1st, 2025 [September 1st, 2025]
- 7 Beginner Machine Learning Projects To Complete This Weekend - KDnuggets - August 29th, 2025 [August 29th, 2025]
- Machine learning approaches for predicting the construction time of drill-and-blast tunnels - Nature - August 29th, 2025 [August 29th, 2025]
- Combining machine learning predictions for KKR.PRD - July 2025 Closing Moves & Technical Pattern Recognition Alerts - Newser - August 29th, 2025 [August 29th, 2025]