Machine learning-based integration develops an immunogenic cell death-derived lncRNA signature for predicting … – Nature.com
Genetic characteristics and transcriptional changes in ICD-related genes in LUAD
Summarized 34 ICD-related genes were identified through a large-scale meta-analysis11. The expression of 34 ICD genes in LUAD samples and normal samples was first analyzed (Figure S1A), and most of the ICD genes expressions were significantly different except for ATG5, IL10, CD8A, and CD8B. Secondly, the location of ICD-related genes in the human genome was analyzed (Figure S1B). the variation of ICD-related genes in LUAD patients in the TCGA cohort was also assessed. The results showed that approximately 69.63% (188/270) of LUAD patients had mutations in ICD-related genes, and the top 20 mutations in ICD-related genes were displayed in the study, with the highest frequency of mutations in TLR4 and NLRP3 (Figure S1C and Figure S1D).
The study also performed GO enrichment analysis of ICD-related genes (Figure S1E), which showed that, in terms of biological processes, the main enrichment was in various receptor activities. In terms of cellular components, the main enrichment was in the cytolytic granule and inflammasome complex. In terms of molecular functions, the main enrichment was in the biological processes of interleukin. In addition, KEGG enrichment analysis showed that ICD-related genes were enriched in the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and Necroptosis. (Figure S1F).
A total of 1367 characteristic lncRNAs were selected by matching the training dataset with validation datasets for in-depth analysis. We employed consensus cluster analysis to partition the TCGA-LUAD dataset into two groups based on the high-expression and low-expression of ICD-related genes. Subsequently, 473 lncRNAs were identified by conducting differential expression analysis (Fig.2A and B). These lncRNAs were then compared with the 300 lncRNAs obtained by Pearson correlation analysis (Fig.2C) to identify 176 ICD-related lncRNAs (Fig.2D). As a result, 24 ICD-related lncRNAs were ultimately identified by univariate Cox regression analysis (Supplementary Table 2).
(A) Heatmap displaying 34 ICD gene expression profiles among normal and LUAD samples in the TCGA cohort. (B) The location of ICD-related genes in the human genome. (C) Single Nucleotide Polymorphism analysis of ICD-related genes in the TCGA cohort. (E) Bar plot displaying Gene Ontology analysis based on 34 ICD genes. (F) Bar plot displaying KEGG analysis based on 34 ICD genes.
A total of 24 ICD-related lncRNAs were inputted into a comprehensive machine-learning model, which encompassed the 10 aforementioned methodologies for creating prognostic signatures. Figure3A illustrated the acquisition of a total of 101 prognostic models. The predictive signature created by the combination of RSF+Ridge had the greatest mean C index of 0.674, as determined by analyzing the training and test cohorts. This signature was identified as the ICDI signature, (Fig.3A and B). The obtained equation is as follows (see Supplementary Table 3 for detail):
$${text{ICDIscore}} = min Vert beta x - y Vert_{2}^{2} + {uplambda } Vert beta Vert _{2}^{2}$$
(A) A total of 101 combinations of machine learning algorithms for the ICDI signature via a tenfold cross-validation framework based on the TCGA-LUAD cohort. The C-index of each signature was calculated across validation datasets, including the GSE29013, GSE30219, GSE31210, GSE3141, and GSE50081cohort. (B) 24 ICD-related lncRNAs importance ranking in the RSF algorithm and 19 lncRNAs enrolled in the ICDI signature coefficient finally obtained in the Ridge algorithm. (C) KaplanMeier survival curve of OS between patients with a high score of ICDI signature and with a low score of ICDI signature in TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141, and GSE50081 cohort. (D) Receiver operator characteristic (ROC) analysis for ICDI signature in TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141, and GSE50081 cohort.
As the elastic net mixing parameter, was limited with 01. The is defined as (uplambda =frac{1-alpha }{2}{Vert beta Vert }_{2}^{2}+alpha {Vert beta Vert }_{1}).
LUAD patients were categorized into two groups based on their ICDI score: a high-score group and a low-score group. The median value was used as the cut-off point. Consistent with expectations, LUAD patients with low ICDI scores exhibited higher overall survival rates in the TCGA-LUAD, GSE29013, GSE30129, GSE31210, GSE3141, and GSE50081 datasets (Fig.3C).
The AUC values of 1-, 2-, 3-, 4-, and 5-year for the ICDI signature in the TCGA-LUAD cohort were estimated as 0.709, 0.678, 0.697, 0.716, and 0.660, respectively (Fig.3D), demonstrating that ICDI signature has promising predictive value for LUAD patients. It was validated in the GSE30219 cohort (0.891, 0.758, 0.744, 0.700, and 0.716), GSE31210 cohort (0.750, 0.691, 0.653, 0.677 and 0.718), GSE3141 cohort (0.690, 0.716, 0.819, 0.801 and 0.729), GSE50081 cohort (0.685, 0.694, 0.712, 0.638, and 0.639), and GSE3141 cohort (0.639, 0.697, 0.794, 0.670, and 0.521) (Fig.3D). As a result of insufficient survival data, the GSE29013 cohort only computes the AUC values for 2-, 3-, and 4-year periods. Still, it possesses strong predictive capability (Fig.3D).
In addition, we compared the predictive value of the ICDI signature with other clinical variables (Fig.4A). The C-index of the ICDI signature was significantly higher than other clinical variables, covering staging, age, gender, etc.
(A) The C-index of the ICDI signature and other clinical characteristics in the TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141 and GSE50081 cohorts. (B) The C-index of the ICDI signature and other signatures developed in the TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141 and GSE50081 cohorts.
Gene expression analysis based on machine learning can be leveraged to predict the outcome of diseases, which in turn can facilitate in early screening of diseases, as well as in researching new therapeutic modalities. Substantial predictive signatures have emerged in recent years. To compare the ICDI signature with published signatures, we searched for LUAD-related disease prediction model articles. Excluding articles with unclear prediction model formulas and missing corresponding gene expression data in the training and validation groups, 102 LUAD-related predictive signatures were finally enrolled (Supplementary Table 4). These signatures contained various kinds of Biological processes, such as cuproptosis, ferroptosis, autophagy, epithelial-mesenchymal transition, acetylation, amino acid metabolism, anoikis, DNA repair, fatty acid metabolism, hypoxia, Inflammatory, N6-methyladenosine, mitochondrial homeostasis, and mTOR, which was established in TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141, and GSE50081 and compared with the C-index of ICDI, it can be seen that the ICDI signature outperformed the majority of signatures in each cohort (Fig.4B).
To investigate the contribution of ICDI features in the LUAD TIME, we evaluated the correlation of ICDI features with immune infiltrating cells and immune-related processes. Based on TIMER algorithm, CIBERSORT algorithm, quantiseq algorithm, MCPcounter algorithm, xCell algorithm, and EPIC algorithm, the ICDI signature was correlated with most immune infiltrating cells except for a few (such as activated NK cells and CD8+naive T cells) (Fig.5A). Based on the ssGSEA algorithm, the ICDI signature was significantly correlated with most immune-related processes (Fig.5B). Based on the ESTIMATE algorithm, the ICDI signature was negatively correlated with StromalScore, ImmuneScore, and ESTIMATEScore, and positively correlated with TumorPurity (Fig.5C), as expected.
(A) Heatmap displaying the correlation between the ICDI signature and 13 immune-related processes. (B) Heatmap displaying the correlation between the ICDI signature and immune infiltrating cells. (C) Box plot displaying the correlation between the ICDI signature and The ESTIMATE Immune Score, ImmuneScore, StromalScore, and TumorPurity. (D) Box plot displaying the correlation between the ICDI signature and immune modulators.
In addition, the study also evaluated the relationship between ICDI signature and known immune modulators (CYT, TLS, Davoli_IS, Roh_IS, Ayers_expIS, TIS, RIR, and TIDE) (Fig.5D). The values of most of the immune modulators (CYT, TLS, Davoli_IS, Roh_IS, Ayers_expIS, and TIS) were significantly higher in the low ICDI signature scores group. The RIR values and TIDE score were all significantly higher in the high ICDI signature scores group, which suggested a higher potential for immunological escape (Fig.5D) All of these displayed ICDI signature was a potential immunotherapeutic biomarker.
To further investigate the potential of ICDI signature as an immunotherapeutic biomarker, the study calculated ICDI scores for each immunotherapy cohort respectively to appraise its predictive valuation. The findings indicated that those with a low ICDI score were more prone to derive advantages from immunotherapy. (Fig.6A) The receiver operating characteristic (ROC) analysis conducted in the study showed that the ICDI signature exhibited a consistent ability to predict the efficacy of immunotherapy-based treatment. This finding was further supported by the analysis of immunotherapy datasets, including cohort Melanoma-GSE78220, STAD-PRJEB25780, and GBM-PRJNA482620, which yielded ROC values of 0.771, 0.671, and 0.723, respectively (Fig.6B).
(A) Box plot displaying the correlation between the ICDI signature and immunotherapy response in the immunotherapy dataset (Melanoma-GSE78220, STAD-PRJEB25780, and GBM-PRJNA482620). (B) ROC curves of ICDI signature to predict the benefits of immunotherapy in the immunotherapy dataset (Melanoma-GSE78220, STAD-PRJEB25780, and GBM-PRJNA482620). (C) Box plot displaying the correlation between the ICDI signature and chemotherapy drugs.
Chemotherapy resistance is a significant barrier to the effectiveness of chemotherapy and targeted therapy in treating advanced lung cancer. We analyzed to determine the drug sensitivities of various chemotherapeutics in living organisms. We then compared the drug sensitivities using the ICDI signature. Individuals with low ICDI scores exhibited a notable rise in sensitivity to erlotinib, gefitinib, docetaxel, and paclitaxel. However, there was no significant variation in sensitivity to cisplatin and 5-fluorouracil. (Fig.6C) The study offers instructions on the administration of chemotherapeutic medications in individuals with LUAD.
See original here:
Machine learning-based integration develops an immunogenic cell death-derived lncRNA signature for predicting ... - Nature.com
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]