Machine learning-based integration develops an immunogenic cell death-derived lncRNA signature for predicting … – Nature.com
Genetic characteristics and transcriptional changes in ICD-related genes in LUAD
Summarized 34 ICD-related genes were identified through a large-scale meta-analysis11. The expression of 34 ICD genes in LUAD samples and normal samples was first analyzed (Figure S1A), and most of the ICD genes expressions were significantly different except for ATG5, IL10, CD8A, and CD8B. Secondly, the location of ICD-related genes in the human genome was analyzed (Figure S1B). the variation of ICD-related genes in LUAD patients in the TCGA cohort was also assessed. The results showed that approximately 69.63% (188/270) of LUAD patients had mutations in ICD-related genes, and the top 20 mutations in ICD-related genes were displayed in the study, with the highest frequency of mutations in TLR4 and NLRP3 (Figure S1C and Figure S1D).
The study also performed GO enrichment analysis of ICD-related genes (Figure S1E), which showed that, in terms of biological processes, the main enrichment was in various receptor activities. In terms of cellular components, the main enrichment was in the cytolytic granule and inflammasome complex. In terms of molecular functions, the main enrichment was in the biological processes of interleukin. In addition, KEGG enrichment analysis showed that ICD-related genes were enriched in the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and Necroptosis. (Figure S1F).
A total of 1367 characteristic lncRNAs were selected by matching the training dataset with validation datasets for in-depth analysis. We employed consensus cluster analysis to partition the TCGA-LUAD dataset into two groups based on the high-expression and low-expression of ICD-related genes. Subsequently, 473 lncRNAs were identified by conducting differential expression analysis (Fig.2A and B). These lncRNAs were then compared with the 300 lncRNAs obtained by Pearson correlation analysis (Fig.2C) to identify 176 ICD-related lncRNAs (Fig.2D). As a result, 24 ICD-related lncRNAs were ultimately identified by univariate Cox regression analysis (Supplementary Table 2).
(A) Heatmap displaying 34 ICD gene expression profiles among normal and LUAD samples in the TCGA cohort. (B) The location of ICD-related genes in the human genome. (C) Single Nucleotide Polymorphism analysis of ICD-related genes in the TCGA cohort. (E) Bar plot displaying Gene Ontology analysis based on 34 ICD genes. (F) Bar plot displaying KEGG analysis based on 34 ICD genes.
A total of 24 ICD-related lncRNAs were inputted into a comprehensive machine-learning model, which encompassed the 10 aforementioned methodologies for creating prognostic signatures. Figure3A illustrated the acquisition of a total of 101 prognostic models. The predictive signature created by the combination of RSF+Ridge had the greatest mean C index of 0.674, as determined by analyzing the training and test cohorts. This signature was identified as the ICDI signature, (Fig.3A and B). The obtained equation is as follows (see Supplementary Table 3 for detail):
$${text{ICDIscore}} = min Vert beta x - y Vert_{2}^{2} + {uplambda } Vert beta Vert _{2}^{2}$$
(A) A total of 101 combinations of machine learning algorithms for the ICDI signature via a tenfold cross-validation framework based on the TCGA-LUAD cohort. The C-index of each signature was calculated across validation datasets, including the GSE29013, GSE30219, GSE31210, GSE3141, and GSE50081cohort. (B) 24 ICD-related lncRNAs importance ranking in the RSF algorithm and 19 lncRNAs enrolled in the ICDI signature coefficient finally obtained in the Ridge algorithm. (C) KaplanMeier survival curve of OS between patients with a high score of ICDI signature and with a low score of ICDI signature in TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141, and GSE50081 cohort. (D) Receiver operator characteristic (ROC) analysis for ICDI signature in TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141, and GSE50081 cohort.
As the elastic net mixing parameter, was limited with 01. The is defined as (uplambda =frac{1-alpha }{2}{Vert beta Vert }_{2}^{2}+alpha {Vert beta Vert }_{1}).
LUAD patients were categorized into two groups based on their ICDI score: a high-score group and a low-score group. The median value was used as the cut-off point. Consistent with expectations, LUAD patients with low ICDI scores exhibited higher overall survival rates in the TCGA-LUAD, GSE29013, GSE30129, GSE31210, GSE3141, and GSE50081 datasets (Fig.3C).
The AUC values of 1-, 2-, 3-, 4-, and 5-year for the ICDI signature in the TCGA-LUAD cohort were estimated as 0.709, 0.678, 0.697, 0.716, and 0.660, respectively (Fig.3D), demonstrating that ICDI signature has promising predictive value for LUAD patients. It was validated in the GSE30219 cohort (0.891, 0.758, 0.744, 0.700, and 0.716), GSE31210 cohort (0.750, 0.691, 0.653, 0.677 and 0.718), GSE3141 cohort (0.690, 0.716, 0.819, 0.801 and 0.729), GSE50081 cohort (0.685, 0.694, 0.712, 0.638, and 0.639), and GSE3141 cohort (0.639, 0.697, 0.794, 0.670, and 0.521) (Fig.3D). As a result of insufficient survival data, the GSE29013 cohort only computes the AUC values for 2-, 3-, and 4-year periods. Still, it possesses strong predictive capability (Fig.3D).
In addition, we compared the predictive value of the ICDI signature with other clinical variables (Fig.4A). The C-index of the ICDI signature was significantly higher than other clinical variables, covering staging, age, gender, etc.
(A) The C-index of the ICDI signature and other clinical characteristics in the TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141 and GSE50081 cohorts. (B) The C-index of the ICDI signature and other signatures developed in the TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141 and GSE50081 cohorts.
Gene expression analysis based on machine learning can be leveraged to predict the outcome of diseases, which in turn can facilitate in early screening of diseases, as well as in researching new therapeutic modalities. Substantial predictive signatures have emerged in recent years. To compare the ICDI signature with published signatures, we searched for LUAD-related disease prediction model articles. Excluding articles with unclear prediction model formulas and missing corresponding gene expression data in the training and validation groups, 102 LUAD-related predictive signatures were finally enrolled (Supplementary Table 4). These signatures contained various kinds of Biological processes, such as cuproptosis, ferroptosis, autophagy, epithelial-mesenchymal transition, acetylation, amino acid metabolism, anoikis, DNA repair, fatty acid metabolism, hypoxia, Inflammatory, N6-methyladenosine, mitochondrial homeostasis, and mTOR, which was established in TCGA-LUAD, GSE29013, GSE30219, GSE31210, GSE3141, and GSE50081 and compared with the C-index of ICDI, it can be seen that the ICDI signature outperformed the majority of signatures in each cohort (Fig.4B).
To investigate the contribution of ICDI features in the LUAD TIME, we evaluated the correlation of ICDI features with immune infiltrating cells and immune-related processes. Based on TIMER algorithm, CIBERSORT algorithm, quantiseq algorithm, MCPcounter algorithm, xCell algorithm, and EPIC algorithm, the ICDI signature was correlated with most immune infiltrating cells except for a few (such as activated NK cells and CD8+naive T cells) (Fig.5A). Based on the ssGSEA algorithm, the ICDI signature was significantly correlated with most immune-related processes (Fig.5B). Based on the ESTIMATE algorithm, the ICDI signature was negatively correlated with StromalScore, ImmuneScore, and ESTIMATEScore, and positively correlated with TumorPurity (Fig.5C), as expected.
(A) Heatmap displaying the correlation between the ICDI signature and 13 immune-related processes. (B) Heatmap displaying the correlation between the ICDI signature and immune infiltrating cells. (C) Box plot displaying the correlation between the ICDI signature and The ESTIMATE Immune Score, ImmuneScore, StromalScore, and TumorPurity. (D) Box plot displaying the correlation between the ICDI signature and immune modulators.
In addition, the study also evaluated the relationship between ICDI signature and known immune modulators (CYT, TLS, Davoli_IS, Roh_IS, Ayers_expIS, TIS, RIR, and TIDE) (Fig.5D). The values of most of the immune modulators (CYT, TLS, Davoli_IS, Roh_IS, Ayers_expIS, and TIS) were significantly higher in the low ICDI signature scores group. The RIR values and TIDE score were all significantly higher in the high ICDI signature scores group, which suggested a higher potential for immunological escape (Fig.5D) All of these displayed ICDI signature was a potential immunotherapeutic biomarker.
To further investigate the potential of ICDI signature as an immunotherapeutic biomarker, the study calculated ICDI scores for each immunotherapy cohort respectively to appraise its predictive valuation. The findings indicated that those with a low ICDI score were more prone to derive advantages from immunotherapy. (Fig.6A) The receiver operating characteristic (ROC) analysis conducted in the study showed that the ICDI signature exhibited a consistent ability to predict the efficacy of immunotherapy-based treatment. This finding was further supported by the analysis of immunotherapy datasets, including cohort Melanoma-GSE78220, STAD-PRJEB25780, and GBM-PRJNA482620, which yielded ROC values of 0.771, 0.671, and 0.723, respectively (Fig.6B).
(A) Box plot displaying the correlation between the ICDI signature and immunotherapy response in the immunotherapy dataset (Melanoma-GSE78220, STAD-PRJEB25780, and GBM-PRJNA482620). (B) ROC curves of ICDI signature to predict the benefits of immunotherapy in the immunotherapy dataset (Melanoma-GSE78220, STAD-PRJEB25780, and GBM-PRJNA482620). (C) Box plot displaying the correlation between the ICDI signature and chemotherapy drugs.
Chemotherapy resistance is a significant barrier to the effectiveness of chemotherapy and targeted therapy in treating advanced lung cancer. We analyzed to determine the drug sensitivities of various chemotherapeutics in living organisms. We then compared the drug sensitivities using the ICDI signature. Individuals with low ICDI scores exhibited a notable rise in sensitivity to erlotinib, gefitinib, docetaxel, and paclitaxel. However, there was no significant variation in sensitivity to cisplatin and 5-fluorouracil. (Fig.6C) The study offers instructions on the administration of chemotherapeutic medications in individuals with LUAD.
See original here:
Machine learning-based integration develops an immunogenic cell death-derived lncRNA signature for predicting ... - Nature.com
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]