Machine Learning And Organizational Change At Southern California Edison – Forbes
An electrical lineman for Southern California Edison works on replacing a transformer as a whole ... [+] block is rewired. Long Beach, California. April 2014.
Analytics are typically viewed as an exercise in data, software and hardware. However, if the analytics are intended to influence decisions and actions, they are also an exercise in organizational change. Companies that dont view them as such are likely not to get much value from their analytics projects.
One organization that is pursuing analytics-based organizational change is Southern California Edison (SCE). One key focus of their activity is safety predictive analyticsunderstanding and predicting high risk work activities by the companys field employees that might lead to a life threatening and/or life altering incident causing injury or death. Safety issues, as you might expect, are fraught with organizational perilpolitics, lack of transparency, labor relations, and so forth. Even reporting a close call runs counter to typical organizational cultures. These organizational perils are a concern to SCE as well, but the company has created an approach to address them. SCE hasnt completely mastered safety predictive analytics and the requisite organizational changes, but its making great progress.
A Structure for Producing Analytical Change
Key to the success of the SCE approach is the structure of the analytical team that is addressing safety analytics. It is small, experienced, and integrated. Two of the key members of the team are Jeff Moore and Rosemary Perez, and they make a dynamic combination. Moore is a data scientist who works in the IT function; Perez works in Safety, Security, and Business Resiliency, and is a Predictive Analytics Advisor. In effect, Moore handles all the analytics and modeling activities on the project, and Perez, who has many years of experience in the field at SCE, leads the change management activities.
Steps to manage organizational change started at the beginning of the project and have persisted throughout it. One of the first objectives was to explain the model and variable insights to management. Outlining the range of possible outcomes allowed Perez and Moore to gain the support needed for a company wide deployment. Since Perez had relationships and trust in the districts, she could introduce the project concept to field management and staff without the concern about Why is Corporate here?. Perez noted that its important to be transparent when speaking with the teams. That trust has resulted in the district staffs willingness to listen and share their ideas on how best to deploy the model, to address missing variables and data, and to drive higher levels of adoption.
The team took all the time needed to get stakeholders engaged. Moore came into the project in the summer of 2018, and he was able to get a machine learning model up and running in a month or so, but presenting it, socializing it, and gaining buy-in for it took far longer. Moore and Perez met with executives of SCE in November and December of 2018. Within days of these meetings the safety model analytics project became a 2019 corporate goal for SCE. Safety was the companys number one priority, and it was willing to try innovative ideas to move it forward. For such a small team to have their work made into a corporate goal is unusual at SCE and elsewhere.
The Risk Model and its Findings
SCE now has an analytical risk-based framework, and risk scores for specific types of work activities and the context of the work. The model draws from a large data warehouse at SCE with work order data, structure characteristics, injury records, experience and training, and planning detail. All those factors were not previously linked, and there wasas is often the case with analyticsconsiderable data engineering necessary to pull together and relate the data.
The machine learning model scores activities that teams in the field perform, like setting a new pole or replacing an insulator. Each activity may be more or less dangerous depending on the time of year, day of the week, weather, crew size and composition, and so forth. Replacing a pole, for example, may be only a moderate risk task in itself, but when done on the side of a hill in the rain with a crane it becomes very high risk. Instead of generic safety messages to employees, SCE can now get much more specific by describing the risk of particular activities they perform on the job in a particular context.
As the model learns it will recommend specific approaches to reduce the risk of a job, like altering the crew mix or crew size, requiring additional management presence, using specific equipment or rigging to perform the work, or creating a longer power outage in order to do the job more slowly. The latter recommendation runs counter to the culture of not inconveniencing customers, but if the model specifically recommends it, then the teams will discuss the contributing factors as well as their years of experience to mitigate the risk before executing the work.
The project has led to several more general findings, which are of greatest interest to SCE executives. For example, management has long been interested in using data to understand changing safety risk profiles of the field teams over time as a result of increasing/decreasing workloads or as weather patterns change. While the predictive model considers more than 200 variables, the findings from the model have been summarized into the top fifteen distinct drivers of serious injury and fatality. Some shifting of variables is expected over time, but there has been great interest in better understanding the initial set of risk factors.
Deploying the Model and Needed Organizational Changes
Moore and Perez are in the early stages of deploying the model; theyve rolled it out to six of 35 districts thus far. Each district has a unique personality, and they dont want cookie-cutter answers on how to deploy in their district.
Moore, whose primary role was to create the model, said he has realized that safety analytics are not just about a model. I started out thinking it was about an algorithm, but I realized many other factors were involved in improving safety. Moore said that he gets some pressure to move on to analytics in other parts of the business, but in order to see your models come to life you have to go through this kind of process. And everyone at SCE believes the safety work is critical.
Perez, whose primary focus is change management, listed some of the organizational changes in deployment. There might be training issuesnot only on analytics, but also communication, leadership and ownership. There might be process concernshow we plan and communicate work. There may be technology concerns in using the system.
Perez also says the process of working with a district is critical. You cant just walk into a district and disrupt their work flow for no reason, she says. They want to know your purpose and your objective. We try to connect, show transparency, and build trust that we are here to help, that we are here to observe how they mitigate risk, to share our findings, and to see how the findings might be integrated into their work practices. We hope they will help us understand the complexity they face every day.
Both team members say they learn something every time they visit a district. Moore notes, You can only see the data you can see in the data warehousetime sheets, work orders, etc. But when you talk to the people who do the work, you learn a lot about how the data is created and applied. With each visit I understand the drivers better and the complexity of the work. I can also speak the language better with each district visit, and I understand the process and the equipment better as well.
With the findings from the model, Moore and Perez are beginning to work with another partner at SCEthe HR organization. It is responsible for defining work practices, training needs, standard operating procedures, and job aids. Each of these is potentially influenced by findings about safety risks, so the goal is to incorporate analytical results into the practices and procedures.
The team is already working to modify the model to incorporate new factorsone of which, not surprisingly given the situation in California, involves the risk of wildfires. Moore and Perez are also trying to create more integration of the risk scores with the work order system. They also plan to try to incorporate the risk model into other SCE business functions like Engineering, which might be able to lower the risk in the planning and construction of the electric grid. All in all, using data and analytics to improve safety is a time-consuming and multifaceted process, but what could be more important than reducing injury and fatality among SCE employees and work crews?
Read the original post:
Machine Learning And Organizational Change At Southern California Edison - Forbes
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]