Kauricone: Machine learning tackles the mundane, making our lives easier – IT Brief New Zealand
A New Zealand startup producing its own servers is expanding into the realm of artificial intelligence, creating machine learning solutions that carry out common tasks while relieving people of repetitive, unsatisfying work. Having spotted an opportunity for the development of low-cost, high-efficiency and environmentally sustainable hardware, Kauricone has more recently pivoted in a fascinating direction: creating software that thinks about mundane problems, so we dont have to. These tasks include identifying trash for improved recycling, looking at items on roads for automated safety, pest identification and in the ultimate alleviation of a notoriously sleep-inducing task counting sheep.
Managing director, founder and tech industry veteran Mike Milne says Kauricone products include application servers, cluster servers and internet of things servers. It was in this latter category that the notion emerged of applying machine learning at the networks edge.
Having already developed low-cost-low power edge hardware, we realised there was a big opportunity for the application of smart computing in some decidedly not-so-enjoyable everyday tasks, relates Milne. After all, we had all the basic building blocks already: the hardware, the programming capability, and with good mobile network coverage, the connectivity.
Situation
Work is just another name for tasks people would rather not do themselves, or that we cannot do for ourselves. And despite living in a fabulously advanced age, there is a persistent reality of all manner of tasks which must be done every day, but which dont require a particularly high level of engagement or even intelligence.
It is these tasks for which machine learning (ML) is quite often a highly promising solution. ML collects and analyses data by applying statistical analysis, and pattern matching, to learn from past experiences. Using the trained data, it provides reliable results, and people can stop doing the boring work, says Milne.
There is in fact more to it than meets the eye (so to speak) when it comes to computer image recognition. Thats why Capcha challenges are often little more than Identify all the images containing traffic lights: because distinguishing objects is hard for bots. ML overcomes the challenge through the training mentioned by Milne: the computer is shown thousands of images and learns which are hits, and which are misses.
Potentially, there are as many use cases as you have dull but necessary tasks in the world, Milne notes. So far, weve tackled a few. Rocks on roads are dangerous, but monitoring thousands of kilometers of tarmac comes at a cost. Construction waste is extensive, bad for the environment and should be managed better. Sheep are plentiful and not always in the right paddock. And pests put New Zealands biodiversity at risk.
Solution
Tackling each of these problems, Kauricone started with its own-developed RISC IoT server hardware as the base. Running Ubuntu and programmed with Python or other open-source languages, the servers typically feature 4GB memory and 128GB solid state storage, the solar-powered edge devices consume as little as 3 watts and run indefinitely on a single solar panel. This makes for a reliable, low-cost field-ready device, says Milne.
The Rocks on Roads project made clear the challenges of simple image identification, with Kauricone eventually running a training model around the clock for 8 days, gathering 35,000 iterations of rock images, which expanded to 3,000,000 identifiable traits (bear in mind, a human identifies a rock almost instantly, perhaps faster if hurled). With this training, the machine became very good at detecting rocks on the roads.
For a new project involving construction waste, the Kauricone IoT server will maintain a vigilant watch on the types and amounts of waste going into building-site skips. Trained to identify types of waste, the resulting data will be the basis for improving waste management and recycling or redirecting certain items for more responsible disposal.
Counting sheep isnt only a method for accelerating sleep time, its also an essential task for farmers across New Zealand. Thats not all as an ML exercise, it anticipates the potential for smarter stock management, as does the related pest identification test case pursued by Kauricone. The ever-watchful camera and supporting hardware manage several tasks: identifying individual animals, numbering them, and also monitoring grass levels, essential for ovine nourishment. Tested so far on a small flock, this application is ready for scale.
Results
Milne says the small test cases pursued by Kauricone to date are just the beginning and anticipates considerable potential for ML applications across all walks of life. There is literally no end to the number of daily tasks where computer vision and ML can alleviate our workload and contribute to improved efficiency and, ultimately, a better and more sustainable planet, he notes.
The Rocks on Roads project promises improved safety with a lower human overhead, reducing or eliminating the possibility of human error. Waste management is a multifaceted problem, where the employment of personnel is rendered difficult owing to simple economics (and potentially stultifying work); New Zealands primary sector is ripe for technologically powered performance improvements which could boost already impressive productivity through automation and improved control; and pest management can help the Department of Conservation and allied parties achieve better results using fewer resources.
Its early days yet, says Milne, But the results from these exploratory projects are promising. With the connectivity of ever-expanding cellular and low-power networks like SIGFOX and LoraWan, the enabling infrastructure is increasingly available even in remote places. And purpose-built low power hardware brings computing right to the edge. Now, its just a matter of identifying opportunities and creating the applications.
For more information visit Kauricone's website.
View original post here:
Kauricone: Machine learning tackles the mundane, making our lives easier - IT Brief New Zealand
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]
- Machine learning analysis reveals tumor heterogeneity and stromal-immune niches in breast cancer - Nature - September 6th, 2025 [September 6th, 2025]
- Identification of Postoperative Weight Loss Trajectories and Development of a Machine Learning-Based Tool for Predicting Malnutrition in Gastric... - September 6th, 2025 [September 6th, 2025]
- The Relationship Between Number of Pregnancies and Serum 25-Hydroxyvitamin D Levels in Women with a Prior Pregnancy: A Cross - Sectional Analysis,... - September 6th, 2025 [September 6th, 2025]
- Tohoku University Researchers Use Machine Learning to Identify Factors Improving Nickel-Based Catalysts for CO Methanation - geneonline.com - September 6th, 2025 [September 6th, 2025]
- Combining machine learning predictions for Galaxy Payroll Group Limited - Quarterly Growth Report & AI Forecast Swing Trade Picks - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast CLSKW recovery - 2025 Breakouts & Breakdowns & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Granite Real Estate Investment Trust recovery - July 2025 Spike Watch & Growth Focused Stock Reports - Newser - September 5th, 2025 [September 5th, 2025]