Is Machine Learning The Key To Unlocking Gen Z Engagement? A Discussion With Jonathan Jadali Of Ascend – Forbes
Jonathan Jadali, Founder and CEO of Ascend
The jury is still out on what makes Gen Zers tick, but while the research is still ongoing there is much evidence to suggest that a marketing strategy utilizing machine learning is exponentially more effective with the next generation.
One thing is abundantly clear to every marketer worth his salt; Gen Z customers are "ninja-level" efficient at swatting away regular ads and pop-ups. They are strongly immune to hard sales and obvious sales content.
Despite all the difficulties that marketers are facing in reaching a wide Gen Z audience, Jonathan Jadali, CEO and Founder at Ascend Agency has found great success in leading Gen Z-focused startups to victory in this marketing struggle.
So what makes the typical Gen Z customer tick and how can businesses and startups build a brand that is appealing to them, utilizing cutting edge technologies?
Jadali shares the ways in which he has used a data and machine-learning strategy in getting many of his clients from obscurity to domination of the Gen Z market.
Content, as they say, is king, but the wrong kind of content isnt even fit to be a pawn in this game. To get startups headed in the right direction, Jonathan often helps direct his clients at Ascend Agency on creating the right type of content for the right type of client.
While most brands are focused on putting out well-curated video and image content in a bid to drive engagement on their social media platforms, Jadali advises that this might not be the best way to go if Gen Zers are your target audience.
The ideal Gen Z customer thrives on spontaneous and messy content. As Jadali states, Gen Z customers are all about being realthey connect well with unfiltered and unedited content because it tends to feel less salesy than others.
For instance, a makeup brand is better off posting a video of a makeup session, in front of a cluttered vanity table, than a photoshoot with a perfectly made-up face.
This is important to keep in mind when implementing any machine learning into your marketing strategy. Whether you are creating a chat bot, or building a data-driven marketing campaign - its important that your system learns to be imperfect.
When AI or Machine Learning is used in marketing, sometimes it can come off as, well, robotic. Gen Z will be an important moment for machine learning marketing as it will help us get closer to contextual AI - machines that more accurately predict and reflect human behavior.
Gen Z wants to see the messiness of life and its process reflected in your content. Brands that do this, are the brands that they are drawn to and often build loyalty for.
How does it look? How effective is it? How satisfying is your service? All these are valid marketing questions and things that in the past had been asked by your millennial customer base.
According to Jadali, these questions do not matter nearly as much to a Gen Z audience.
Clearly, customers want products that work and businesses that deliver, but with a Gen Z audience, that doesnt seem to be the right way to lead in marketing to them.
Having worked with both Fortune 500 companies and smaller startups alike in the last 3 years since Ascend Agency launched, Jadali is fairly certain that Gen Z customers are way more attracted to how your business makes them feel.
This is where machine learning can really come in handy. Understanding your customers' moods and habits can help you tap into what makes them feel great about themselves and the products in their lives.
Gen Z customers are tired of hearing about how amazing your product is, businesses have been hyping up their products for as long as businesses have existed and Gen Zers arent having any more of it. In Jonathans words, Sell experiences, not products, and your products will head out of your door as well.
According to Mention, 25% of what you sell is your product. The additional 75% is the intangible feeling that comes with said product.
What dominant feeling do you want to evoke with your content? A question that is popularly asked at the Ascend Agency office, is one that has helped brands build consistency in their content style and delivery and that has brought the Gen Z customers in their droves.
This question can be answered through aggregated customer data that helps you better understand the emotions from brands that they also engage with.
Red Bull is a great example of a brand that utilizes data and machine learning in this manner. Their video content covers high-risk sports, like Skydiving, Bungee jumping, etc. From customer data processed by predictive analytics and machine learning systems, the dominant feeling Red Bull chose to evoke is one of courage and strength.
What is yours, Happiness, Reflection, or Prestige? The sooner you can answer that, the sooner you can get your gen Z audience to really pay attention. Machine learning can help you answer this question faster and more accurately.
Did you know that once an Influencers followership crosses the 100k mark, their engagement drops drastically? When did you last get an Instagram reply from Selena Gomez or Christiano Ronaldo? Never I presume. I will get back to this point in a bit.
While Guest Posting and proper ad placement might still work rather well for Millennials, Social media is clearly the major frontier for Gen Zers. This is why Influencer Marketing has risen to the fore in the last 6 years.
However, nothing is more important to this generation than being seen and heard. This is why Gen Z customers rate a brands authenticity by how well the brands engage with them online.
If a customer posts a tweet asking you for information or laying down a complaint, the first thing to do is to respond publicly before directing to their inbox as opposed to solely responding to them privately. If they send in a review, respond and thank them. Call them by name, engage with them personally in a way that doesnt feel rehearsed, says Jadali.
It goes without saying that brands should be more intentional with engaging their Gen Z audience personally. However, this is hard to scale.
Machine learning is helping brands go beyond the typical automated response we often see in DM and SMS replies. As this technology becomes more advanced, you will be able to engage with hundreds of thousands of customers at once at a deeply personal level.
Micro-influencers drive 60% higher engagement levels and 22.2% more weekly conversions coupled with the fact that they are considerably cheaper. However, their secret sauce is the fact that they are still able to engage with their followers directly far more than celebrities like Cristiano Ronaldo or Selena Gomez ever can.
Soon, machine learning will allow for this type of personal engagement at scale. It will also allow for small brands and businesses to authentically engage with customers without having to spend hours of their day on replies and comments.
As Jadali explains, The Gen Z audience is sensitive, intuitive and versatile, reaching them is not rocket science, it is not science at all, it is an art. It is something that anyone can master, wield and utilize.
Gen Z will help push Machine Learning to become more human, more perfectly imperfect in its responses, and move us closer to contextual AI in marketing and online content.
See the original post here:
Is Machine Learning The Key To Unlocking Gen Z Engagement? A Discussion With Jonathan Jadali Of Ascend - Forbes
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]