Is fake data the real deal when training algorithms? – The Guardian
Youre at the wheel of your car but youre exhausted. Your shoulders start to sag, your neck begins to droop, your eyelids slide down. As your head pitches forward, you swerve off the road and speed through a field, crashing into a tree.
But what if your cars monitoring system recognised the tell-tale signs of drowsiness and prompted you to pull off the road and park instead? The European Commission has legislated that from this year, new vehicles be fitted with systems to catch distracted and sleepy drivers to help avert accidents. Now a number of startups are training artificial intelligence systems to recognise the giveaways in our facial expressions and body language.
These companies are taking a novel approach for the field of AI. Instead of filming thousands of real-life drivers falling asleep and feeding that information into a deep-learning model to learn the signs of drowsiness, theyre creating millions of fake human avatars to re-enact the sleepy signals.
Big data defines the field of AI for a reason. To train deep learning algorithms accurately, the models need to have a multitude of data points. That creates problems for a task such as recognising a person falling asleep at the wheel, which would be difficult and time-consuming to film happening in thousands of cars. Instead, companies have begun building virtual datasets.
Synthesis AI and Datagen are two companies using full-body 3D scans, including detailed face scans, and motion data captured by sensors placed all over the body, to gather raw data from real people. This data is fed through algorithms that tweak various dimensions many times over to create millions of 3D representations of humans, resembling characters in a video game, engaging in different behaviours across a variety of simulations.
In the case of someone falling asleep at the wheel, they might film a human performer falling asleep and combine it with motion capture, 3D animations and other techniques used to create video games and animated movies, to build the desired simulation. You can map [the target behaviour] across thousands of different body types, different angles, different lighting, and add variability into the movement as well, says Yashar Behzadi, CEO of Synthesis AI.
Using synthetic data cuts out a lot of the messiness of the more traditional way to train deep learning algorithms. Typically, companies would have to amass a vast collection of real-life footage and low-paid workers would painstakingly label each of the clips. These would be fed into the model, which would learn how to recognise the behaviours.
The big sell for the synthetic data approach is that its quicker and cheaper by a wide margin. But these companies also claim it can help tackle the bias that creates a huge headache for AI developers. Its well documented that some AI facial recognition software is poor at recognising and correctly identifying particular demographic groups. This tends to be because these groups are underrepresented in the training data, meaning the software is more likely to misidentify these people.
Niharika Jain, a software engineer and expert in gender and racial bias in generative machine learning, highlights the notorious example of Nikon Coolpixs blink detection feature, which, because the training data included a majority of white faces, disproportionately judged Asian faces to be blinking. A good driver-monitoring system must avoid misidentifying members of a certain demographic as asleep more often than others, she says.
The typical response to this problem is to gather more data from the underrepresented groups in real-life settings. But companies such as Datagen say this is no longer necessary. The company can simply create more faces from the underrepresented groups, meaning theyll make up a bigger proportion of the final dataset. Real 3D face scan data from thousands of people is whipped up into millions of AI composites. Theres no bias baked into the data; you have full control of the age, gender and ethnicity of the people that youre generating, says Gil Elbaz, co-founder of Datagen. The creepy faces that emerge dont look like real people, but the company claims that theyre similar enough to teach AI systems how to respond to real people in similar scenarios.
There is, however, some debate over whether synthetic data can really eliminate bias. Bernease Herman, a data scientist at the University of Washington eScience Institute, says that although synthetic data can improve the robustness of facial recognition models on underrepresented groups, she does not believe that synthetic data alone can close the gap between the performance on those groups and others. Although the companies sometimes publish academic papers showcasing how their algorithms work, the algorithms themselves are proprietary, so researchers cannot independently evaluate them.
In areas such as virtual reality, as well as robotics, where 3D mapping is important, synthetic data companies argue it could actually be preferable to train AI on simulations, especially as 3D modelling, visual effects and gaming technologies improve. Its only a matter of time until you can create these virtual worlds and train your systems completely in a simulation, says Behzadi.
This kind of thinking is gaining ground in the autonomous vehicle industry, where synthetic data is becoming instrumental in teaching self-driving vehicles AI how to navigate the road. The traditional approach filming hours of driving footage and feeding this into a deep learning model was enough to get cars relatively good at navigating roads. But the issue vexing the industry is how to get cars to reliably handle what are known as edge cases events that are rare enough that they dont appear much in millions of hours of training data. For example, a child or dog running into the road, complicated roadworks or even some traffic cones placed in an unexpected position, which was enough to stump a driverless Waymo vehicle in Arizona in 2021.
With synthetic data, companies can create endless variations of scenarios in virtual worlds that rarely happen in the real world. Instead of waiting millions more miles to accumulate more examples, they can artificially generate as many examples as they need of the edge case for training and testing, says Phil Koopman, associate professor in electrical and computer engineering at Carnegie Mellon University.
AV companies such as Waymo, Cruise and Wayve are increasingly relying on real-life data combined with simulated driving in virtual worlds. Waymo has created a simulated world using AI and sensor data collected from its self-driving vehicles, complete with artificial raindrops and solar glare. It uses this to train vehicles on normal driving situations, as well as the trickier edge cases. In 2021, Waymo told the Verge that it had simulated 15bn miles of driving, versus a mere 20m miles of real driving.
An added benefit to testing autonomous vehicles out in virtual worlds first is minimising the chance of very real accidents. A large reason self-driving is at the forefront of a lot of the synthetic data stuff is fault tolerance, says Herman. A self-driving car making a mistake 1% of the time, or even 0.01% of the time, is probably too much.
In 2017, Volvos self-driving technology, which had been taught how to respond to large North American animals such as deer, was baffled when encountering kangaroos for the first time in Australia. If a simulator doesnt know about kangaroos, no amount of simulation will create one until it is seen in testing and designers figure out how to add it, says Koopman. For Aaron Roth, professor of computer and cognitive science at the University of Pennsylvania, the challenge will be to create synthetic data that is indistinguishable from real data. He thinks it is plausible that were at that point for face data, as computers can now generate photorealistic images of faces. But for a lot of other things, which may or may not include kangaroos I dont think that were there yet.
Excerpt from:
Is fake data the real deal when training algorithms? - The Guardian
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]