Immunai Raises $60M to Decode the Immune System with Machine Learning and AI – AlleyWatch
The immune system at its core is a complex system of cells, organs, and tissues. These components work in unison to fight infection in the form of microbes. Developing an understanding of how this intricate system works is critical in ensuring that society as a whole has adequate immune health to combat disease and infection.Immunaihas built the largest database for immunology in the world using machine learning and AI to map the entire immune system at a granular and specific level. This data can be leveraged by the healthcare industry to provide better therapeutics that get to market faster. This understanding will also allow biotech companies and pharmaceutical manufacturers to radically personalize therapeutics in the future. Immunai is initially focused on the oncology market but the offering is versatile can be applied to things like autoimmune disorders and infectious diseases like COVID-19.
AlleyWatch caught up with CEO and Cofounder Noam Solomon to learn more about the impact that Immunai is having in the understanding of the immune system, the companys partnerships, experience fundraising during the pandemic, latest funding round, and much, much more
Who were your investors and how much did you raise?
This $60M Series A round was led by Schusterman Family Investments, Duquesne Family Office, Catalio Capital Management, and Dexcel Pharma, with additional participation from existing investors Viola Ventures and TLV Partners.
Tell us about the product or service that Immunai offers.
Immunai is on a mission to reprogram the immune system to advance personalized medicine to better detect, diagnose, and treat disease. To do so, Immunai has generated the largest proprietary database for immunology in the world, known as the Annotated Multi-omic Immune Cell Atlas (AMICA). This platform incorporates variables such as clinical lab metadata (e.g., processing wait time) and batch data (e.g., hospital), and others; then, it leverages machine learning and artificial intelligence to complete the annotation and characterization of immune cells. Immunais team of computational biologists and immunologists work with our partners at pharmaceutical companies to figure out the implications of what Immunai has found, whether its a new therapy, a drug combination, or a diagnostic.
What inspired the start of Immunai?
When I met my cofounder Luis, I was a math postdoc at MIT and Luis was working to apply machine learning to biology. Together, we wanted to bring transfer learning AI methods to what we believe would solve the biggest problem in society today disease.
All disease can be traced back to the immune system. But what we realized is that pharmaceutical companies dont have access to any comprehensive, granular insight into how the immune system works, how it responds to the drugs or therapies theyre developing, and what patients are most likely to benefit. With our scientific cofounders, Ansu Satpathy (assistant professor at Stanford for cancer immunology), Danny Wells (researcher at the Parker Institute for cancer immunotherapy) and Dan Littman (Professor at NYU and HHMI investigator) we realized that with single-cell technologies we would be able to measure and map the immune system with granularity and specificity like never available before.
At Immunai, weve combined the brightest minds across single-cell genomics, data science, and engineering to build the largest proprietary database on immunology in the world. We hope our work will lead to a better understanding of how to overcome the key unsolved problems and bottlenecks in immunotherapy discovery and development. We want to enable the development of more effective therapies and combinations for each patient, accelerate the ability to bring these therapies to market, and ultimately, provide better options for patients at a faster pace than ever before.
How is Immunai different?
No one is doing exactly what were doing. Companies have been trying to understand the immune system for years, but have been limited by traditional bulk sequencing technologies, which dont provide nearly enough data. By analyzing gene expression levels, protein markers, TCR and BCR fragments, and other single-cell omics, weve compiled 10,000 times more data for each immune cell than others before, giving partners a view of the immune system with a full spectrum of color and dimensionality.
Further, our proprietary machine learning and single-cell analysis that we apply to mine AMICA , the worlds largest proprietary Multiomic Immune Cell Atlas, allow us to understand the immune system at scale with unprecedented granularity and consistency. This provides a solution to the prohibitive batch effect problem that our competitors have not been able to solve.
What market does Immunai target and how big is it?
Immunais offering can be applied to multiple disease areas from cancer to autoimmune disorders to infectious diseases like COVID-19. The company is primarily focusing on the oncology market, which is currently set to surpass $469.5 billion by 2026.
Whats your business model?
Immunai partners with biopharmaceutical and biotech companies to answer critical questions like what makes T-cells expand, persist, and penetrate a tumor, which cells are cytotoxic, which cells in a cell therapy drive response, what are the immunological signatures that are more likely to lead to clinical response to different therapies, and more. These partnerships are usually structured as milestone-based collaborations, ranging from prospective clinical trial design and biomarker discovery to earlier target discovery and target validation.
How has COVID-19 impacted your business?
COVID-19 has impacted the way we work and the pace at which we work. Weve asked our employees who are not working in the lab to work from home and have implemented strict social distancing protocols within the lab. In the biopharma world, business is bigger than ever before, so we have many new partnerships in a variety of disease areas, including Immuno-Oncology, Autoimmunity, Neurodegenerative diseases, and infectious diseases .
What was the funding process like?
Fast but complex. It happened over a few very eventful months, with many important partnerships forged and multiple parties involved in the financing round, which all took place during a worldwide pandemic, of course.
What are the biggest challenges that you faced while raising capital?
The financing round happened as we were closing a few important partnerships, so running both responsibilities as CEO was non-trivial. In the middle of it all, life happened, and we had to deal with family health issues, including the fact that my wife and I had caught COVID, but we were both fine, luckily.
But what I didnt expect from the pandemic was being able to raise $60M without meeting the lead investors face to face. This is something that frankly, I didnt expect happening, and definitely didnt expect would happen so fast.
What factors about your business led your investors to write the check?
Our investors have witnessed the accelerated growth of our platform and are aligned with our vision to reprogram immunity. Machine learning crossed with genomics will unlock the mysteries of the immune system and lead to improved therapies. To actually execute on this vision, a world-class team is required, and weve put it together.
What are the milestones you plan to achieve in the next six months?
Were going to use this new financing round to build and improve our platform. With our expansion into functional genomics, well be funding collaborations with partners to answer the most pressing questions in immuno-oncology, cell therapy, infectious disease, and autoimmunity, including key biology driving clinical endpoints and target discovery.
We also plan to invest heavily in growth and double our team of 70 by year-end. We currently have a large lab in New York with 50 scientists working on sequencing and tech development. Were looking to add more people to the team to develop new assets and IP.
We also plan to invest heavily in growth and double our team of 70 by year-end. We currently have a large lab in New York with 50 scientists working on sequencing and tech development. Were looking to add more people to the team to develop new assets and IP.
What advice can you offer companies in New York that do not have a fresh injection of capital in the bank?
Understand the essence of what youre building and bring it to market quickly. Lean Startup is one of the most important business books Ive read; its critical for any business, but particularly for one with a limited runway. Whats the most expeditious experiment you can run to see if your customers actually care about your product.
Where do you see the company going now over the near term?
Were transitioning from observational genomics to functional genomics. Were concentrating on two major projects: improving the ability to target new checkpoints and validate targets for cell therapies. Just in the last year, weve been able to identify new mechanisms of resistance with partners in record time. At this pace, we hope the work well be able to do in the next couple of years will be groundbreaking and life-saving, but its too early to say specifically where well be.
Whats your favorite outdoor dining restaurant in NYC
Cafe Mogador on St Marks.
Go here to see the original:
Immunai Raises $60M to Decode the Immune System with Machine Learning and AI - AlleyWatch
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]