Humans in the Loop: AI & Machine Learning in the Bloomberg Terminal – Yahoo Finance
Originally published on bloomberg.com
NORTHAMPTON, MA / ACCESSWIRE / May 12, 2023 / The Bloomberg Terminal provides access to more than 35 million financial instruments across all asset classes. That's a lot of data, and to make it useful, AI and machine learning (ML) are playing an increasingly central role in the Terminal's ongoing evolution.
Machine learning is about scouring data at speed and scale that is far beyond what human analysts can do. Then, the patterns or anomalies that are discovered can be used to derive powerful insights and guide the automation of all kinds of arduous or tedious tasks that humans used to have to perform manually.
While AI continues to fall short of human intelligence in many applications, there are areas where it vastly outshines the performance of human agents. Machines can identify trends and patterns hidden across millions of documents, and this ability improves over time. Machines also behave consistently, in an unbiased fashion, without committing the kinds of mistakes that humans inevitably make.
"Humans are good at doing things deliberately, but when we make a decision, we start from whole cloth," says Gideon Mann, Head of ML Product & Research in Bloomberg's CTO Office. "Machines execute the same way every time, so even if they make a mistake, they do so with the same error characteristic."
The Bloomberg Terminal currently employs AI and ML techniques in several exciting ways, and we can expect this practice to expand rapidly in the coming years. The story begins some 20 years ago
Keeping Humans in the Loop
When we started in the 80s, data extraction was a manual process. Today, our engineers and data analysts build, train, and use AI to process unstructured data at massive speeds and scale - so our customers are in the know faster.
The rise of the machines
Prior to the 2000s, all tasks related to data collection, analysis, and distribution at Bloomberg were performed manually, because the technology did not yet exist to automate them. The new millennium brought some low-level automation to the company's workflows, with the emergence of primitive models operating by a series of if-then rules coded by humans. As the decade came to a close, true ML took flight within the company. Under this new approach, humans annotate data in order to train a machine to make various associations based on their labels. The machine "learns" how to make decisions, guided by this training data, and produces ever more accurate results over time. This approach can scale dramatically beyond traditional rules-based programming.
Story continues
In the last decade, there has been an explosive growth in the use of ML applications within Bloomberg. According to James Hook, Head of the company's Data department, there are a number of broad applications for AI/ML and data science within Bloomberg.
One is information extraction, where computer vision and/or natural language processing (NLP) algorithms are used to read unstructured documents - data that's arranged in a format that's typically difficult for machines to read - in order to extract semantic meaning from them. With these techniques, the Terminal can present insights to users that are drawn from video, audio, blog posts, tweets, and more.
Anju Kambadur, Head of Bloomberg's AI Engineering group, explains how this works:
"It typically starts by asking questions of every document. Let's say we have a press release. What are the entities mentioned in the document? Who are the executives involved? Who are the other companies they're doing business with? Are there any supply chain relationships exposed in the document? Then, once you've determined the entities, you need to measure the salience of the relationships between them and associate the content with specific topics. A document might be about electric vehicles, it might be about oil, it might be relevant to the U.S., it might be relevant to the APAC region - all of these are called topic codes' and they're assigned using machine learning."
All of this information, and much more, can be extracted from unstructured documents using natural language processing models.
Another area is quality control, where techniques like anomaly detection are used to spot problems with dataset accuracy, among other areas. Using anomaly detection methods, the Terminal can spot the potential for a hidden investment opportunity, or flag suspicious market activity. For example, if a financial analyst was to change their rating of a particular stock following the company's quarterly earnings announcement, anomaly detection would be able to provide context around whether this is considered a typical behavior, or whether this action is worthy of being presented to Bloomberg clients as a data point worth considering in an investment decision.
And then there's insight generation, where AI/ML is used to analyze large datasets and unlock investment signals that might not otherwise be observed. One example of this is using highly correlated data like credit card transactions to gain visibility into recent company performance and consumer trends. Another is analyzing and summarizing the millions of news stories that are ingested into the Bloomberg Terminal each day to understand the key questions and themes that are driving specific markets or economic sectors or trading volume in a specific company's securities.
Humans in the loop
When we think of machine intelligence, we imagine an unfeeling autonomous machine, cold and impartial. In reality, however, the practice of ML is very much a team effort between humans and machines. Humans, for now at least, still define ontologies and methodologies, and perform annotations and quality assurance tasks. Bloomberg has moved quickly to increase staff capacity to perform these tasks at scale. In this scenario, the machines aren't replacing human workers; they are simply shifting their workflows away from more tedious, repetitive tasks toward higher level strategic oversight.
"It's really a transfer of human skill from manually extracting data points to thinking about defining and creating workflows," says Mann.
Ketevan Tsereteli, a Senior Researcher in Bloomberg Engineering's Artificial Intelligence (AI) group, explains how this transfer works in practice.
"Previously, in the manual workflow, you might have a team of data analysts that would be trained to find mergers and acquisition news in press releases and to extract the relevant information. They would have a lot of domain expertise on how this information is reported across different regions. Today, these same people are instrumental in collecting and labeling this information, and providing feedback on an ML model's performance, pointing out where it made correct and incorrect assumptions. In this way, that domain expertise is gradually transferred from human to machine."
Humans are required at every step to ensure the models are performing optimally and improving over time. It's a collaborative effort involving ML engineers who build the learning systems and underlying infrastructure, AI researchers and data scientists who design and implement workflows, and annotators - journalists and other subject matter experts - who collect and label training data and perform quality assurance.
"We have thousands of analysts in our Data department who have deep subject matter expertise in areas that matter most to our clients, like finance, law, and government," explains ML/AI Data Strategist Tina Tseng. "They not only understand the data in these areas, but also how the data is used by our customers. They work very closely with our engineers and data scientists to develop our automation solutions."
Annotation is critical, not just for training models, but also for evaluating their performance.
"We'll annotate data as a truth set - what they call a "golden" copy of the data," says Tseng. "The model's outputs can be automatically compared to that evaluation set so that we can calculate statistics to quantify how well the model is performing. Evaluation sets are used in both supervised and unsupervised learning."
Check out "Best Practices for Managing Data Annotation Projects," a practical guide published by Bloomberg's CTO Office and Data department about planning and implementing data annotation initiatives.
READ NOW
View additional multimedia and more ESG storytelling from Bloomberg on 3blmedia.com.
Contact Info:Spokesperson: BloombergWebsite: https://www.3blmedia.com/profiles/bloombergEmail: info@3blmedia.com
SOURCE: Bloomberg
View source version on accesswire.com: https://www.accesswire.com/754570/Humans-in-the-Loop-AI-Machine-Learning-in-the-Bloomberg-Terminal
See the rest here:
Humans in the Loop: AI & Machine Learning in the Bloomberg Terminal - Yahoo Finance
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]