How to Train Your AI Soldier Robots (and the Humans Who Command Them) – War on the Rocks
Editors Note: This article was submitted in response to thecall for ideas issued by the co-chairs of the National Security Commission on Artificial Intelligence, Eric Schmidt and Robert Work. It addresses the third question (part a.), which asks how institutions, organizational structures, and infrastructure will affect AI development, and will artificial intelligence require the development of new institutions or changes to existing institutions.
Artificial intelligence (AI) is often portrayed as a single omnipotent force the computer as God. Often the AI is evil, or at least misguided. According to Hollywood, humans can outwit the computer (2001: A Space Odyssey), reason with it (Wargames), blow it up (Star Wars: The Phantom Menace), or be defeated by it (Dr. Strangelove). Sometimes the AI is an automated version of a human, perhaps a human fighters faithful companion (the robot R2-D2 in Star Wars).
These science fiction tropes are legitimate models for military discussion and many are being discussed. But there are other possibilities. In particular, machine learning may give rise to new forms of intelligence; not natural, but not really artificial if the term implies having been designed in detail by a person. Such new forms of intelligence may resemble that of humans or other animals, and we will discuss them using language associated with humans, but we are not discussing robots that have been deliberately programmed to emulate human intelligence. Through machine learning they have been programmed by their own experiences. We speculate that some of the characteristics that humans have evolved over millennia will also evolve in future AI, characteristics that have evolved purely for their success in a wide range of situations that are real, for humans, or simulated, for robots.
As the capabilities of AI-enabled robots increase, and in particular as behaviors emerge that are both complex and outside past human experience, how will we organize, train, and command them and the humans who will supervise and maintain them? Existing methods and structures, such as military ranks and doctrine, that have evolved over millennia to manage the complexity of human behavior will likely be necessary. But because robots will evolve new behaviors we cannot yet imagine, they are unlikely to be sufficient. Instead, the military and its partners will need to learn new types of organization and new approaches to training. It is impossible to predict what these will be but very possible they will differ greatly from approaches that have worked in the past. Ongoing experimentation will be essential.
How to Respond to AI Advances
The development of AI, especially machine learning, will lead to unpredictable new types of robots. Advances in AI suggest that humans will have the ability to create many types of robots, of different shapes, sizes, or degrees of independence or autonomy. It is conceivable that humans may one day be able to design tiny AI bullets to pierce only designated targets, automated aircraft to fly as loyal wingmen alongside human pilots, or thousands of AI fish to swim up an enemys river. Or we could design AI not as a device but as a global grid that analyzes vast amounts of diverse data. Multiple programs funded by the Department of Defense are on their way to developing robots with varying degrees of autonomy.
In science fiction, robots are often depicted as behaving in groups (like the robot dogs in Metalhead). Researchers inspired by animal behaviors have developed AI concepts such as swarms, in which relatively simple rules for each robot can result in complex emergent phenomena on a larger scale. This is a legitimate and important area of investigation. Nevertheless, simply imitating the known behaviors of animals has its limits. After observing the genocidal nature of military operations among ants, biologists Bert Holldobler and E. O. Wilson wrote, If ants had nuclear weapons, they would probably end the world in a week. Nor would we want to limit AI to imitating human behavior. In any case, a major point of machine learning is the possibility of uncovering new behaviors or strategies. Some of these will be very different from all past experience; human, animal, and automated. We will likely encounter behaviors that, although not human, are so complex that some human language, such as personality, may seem appropriately descriptive. Robots with new, sophisticated patterns of behavior may require new forms of organization.
Military structure and scheme of maneuver is key to victory. Groups often fight best when they dont simply swarm but execute sophisticated maneuvers in hierarchical structures. Modern military tactics were honed over centuries of experimentation and testing. This was a lengthy, expensive, and bloody process.
The development of appropriate organizations and tactics for AI systems will also likely be expensive, although one can hope that through the use of simulation it will not be bloody. But it may happen quickly. The competitive international environment creates pressure to use machine learning to develop AI organizational structure and tactics, techniques, and procedures as fast as possible.
Despite our considerable experience organizing humans, when dealing with robots with new, unfamiliar, and likely rapidly-evolving personalities we confront something of a blank slate. But we must think beyond established paradigms, beyond the computer as all-powerful or the computer as loyal sidekick.
Humans fight in a hierarchy of groups, each soldier in a squad or each battalion in a brigade exercising a combination of obedience and autonomy. Decisions are constantly made at all levels of the organization. Deciding what decisions can be made at what levels is itself an important decision. In an effective organization, decision-makers at all levels have a good idea of how others will act, even when direct communication is not possible.
Imagine an operation in which several hundred underwater robots are swimming up a river to accomplish a mission. They are spotted and attacked. A decision must be made: Should they retreat? Who decides? Communications will likely be imperfect. Some mid-level commander, likely one of the robot swimmers, will decide based on limited information. The decision will likely be difficult and depend on the intelligence, experience, and judgment of the robot commander. It is essential that the swimmers know who or what is issuing legitimate orders. That is, there will have to be some structure, some hierarchy.
The optimal unit structure will be worked out through experience. Achieving as much experience as possible in peacetime is essential. That means training.
Training Robot Warriors
Robots with AI-enabled technologies will have to be exercised regularly, partly to test them and understand their capabilities and partly to provide them with the opportunity to learn from recreating combat. This doesnt mean that each individual hardware item has to be trained, but that the software has to develop by learning from its mistakes in virtual testbeds and, to the extent that they are feasible, realistic field tests. People learn best from the most realistic training possible. There is no reason to expect machines to be any different in that regard. Furthermore, as capabilities, threats, and missions evolve, robots will need to be continuously trained and tested to maintain effectiveness.
Training may seem a strange word for machine learning in a simulated operational environment. But then, conventional training is human learning in a controlled environment. Robots, like humans, will need to learn what to expect from their comrades. And as they train and learn highly complex patterns, it may make sense to think of such patterns as personalities and memories. At least, the patterns may appear that way to the humans interacting with them. The point of such anthropomorphic language is not that the machines have become human, but that their complexity is such that it is helpful to think in these terms.
One big difference between people and machines is that, in theory at least, the products of machine learning, the code for these memories or personalities, can be uploaded directly from one very experienced robot to any number of others. If all robots are given identical training and the same coded memories, we might end up with a uniformity among a units members that, in the aggregate, is less than optimal for the unit as a whole.
Diversity of perspective is accepted as a valuable aid to human teamwork. Groupthink is widely understood to be a threat. Its reasonable to assume that diversity will also be beneficial to teams of robots. It may be desirable to create a library of many different personalities or memories that could be assigned to different robots for particular missions. Different personalities could be deliberately created by using somewhat different sets of training testbeds to develop software for the same mission.
If AI can create autonomous robots with human-like characteristics, what is the ideal personality mix for each mission? Again, we are using the anthropomorphic term personality for the details of the robots behavior patterns. One could call it a robots programming if that did not suggest the existence of an intentional programmer. The robots personalities have evolved from the robots participation in a very large number of simulations. It is unlikely that any human will fully understand a given personality or be able to fully predict all aspects of a robots behavior.
In a simple case, there may be one optimum personality for all the robots of one type. In more complicated situations, where robots will interact with each other, having robots that respond differently to the same stimuli could make a unit more robust. These are things that military planners can hope to learn through testing and training. Of course, attributes of personality that may have evolved for one set of situations may be less than optimal, or positively dangerous, in another. We talk a lot about artificial intelligence. We dont discuss artificial mental illness. But there is no reason to rule it out.
Of course, humans will need to be trained to interact with the machines. Machine learning systems already often exhibit sophisticated behaviors that are difficult to describe. Its unclear how future AI-enabled robots will behave in combat. Humans, and other robots, will need experience to know what to expect and to deal with any unexpected behaviors that may emerge. Planners need experience to know which plans might work.
But the human-robot relationship might turn out to be something completely different. For all of human history, generals have had to learn their soldiers capabilities. They knew best exactly what their troops could do. They could judge the psychological state of their subordinates. They might even know when they were being lied to. But todays commanders do not know, yet, what their AI might prove capable of. In a sense, it is the AI troops that will have to train their commanders.
In traditional military services, the primary peacetime occupation of the combat unit is training. Every single servicemember has to be trained up to the standard necessary for wartime proficiency. This is a huge task. In a robot unit, planners, maintainers, and logisticians will have to be trained to train and maintain the machines but may spend little time working on their hardware except during deployment.
What would the units look like? What is the optimal unit rank structure? How does the human rank structure relate to the robot rank structure? There are a million questions as we enter uncharted territory. The way to find out is to put robot units out onto test ranges where they can operate continuously, test software, and improve machine learning. AI units working together can learn and teach each other and humans.
Conclusion
AI-enabled robots will need to be organized, trained, and maintained. While these systems will have human-like characteristics, they will likely develop distinct personalities. The military will need an extensive training program to inform new doctrines and concepts to manage this powerful, but unprecedented, capability.
Its unclear what structures will prove effective to manage AI robots. Only by continuous experimentation can people, including computer scientists and military operators, understand the developing world of multi-unit human and robot forces. We must hope that experiments lead to correct solutions. There is no guarantee that we will get it right. But there is every reason to believe that as technology enables the development of new and more complex patterns of robot behavior, new types of military organizations will emerge.
Thomas Hamilton is a Senior Physical Scientist at the nonprofit, nonpartisan RAND Corporation. He has a Ph.D. in physics from Columbia University and was a research astrophysicist at Harvard, Columbia, and Caltech before joining RAND. At RAND he has worked extensively on the employment of unmanned air vehicles and other technology issues for the Defense Department.
Image: Wikicommons (U.S. Air Force photo by Kevin L. Moses Sr.)
Here is the original post:
How to Train Your AI Soldier Robots (and the Humans Who Command Them) - War on the Rocks
- Prefix-RFT: A Unified Machine Learning Framework to blend Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) - MarkTechPost - August 24th, 2025 [August 24th, 2025]
- What machine learning models say about Iterum Therapeutics plc - Weekly Risk Report & Fast Exit Strategy with Risk Control - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Putnam Municipal Opportunities Trust recovery - Insider Selling & Weekly Return Optimization Plans - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Viking Therapeutics Inc. recovery - Quarterly Profit Report & Fast Entry and Exit Trade Plans - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Tectonic Financial Inc. recovery - 2025 Historical Comparison & Risk Adjusted Buy and Sell Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Cowen Inc. Preferred Security - 2025 Performance Recap & Reliable Volume Spike Trade Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Milestone Pharmaceuticals Inc. recovery - July 2025 Movers & Breakout Confirmation Trade Signals - Newser - August 24th, 2025 [August 24th, 2025]
- What machine learning models say about FIGS - Weekly Trend Recap & Expert Curated Trade Setup Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Daxor Corporation - July 2025 Sentiment & Fast Exit Strategy with Risk Control - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Willis Towers Watson Public Limited Company - 2025 Macro Impact & Free Safe Capital Growth Stock Tips -... - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Sanmina Corporation - Trade Exit Summary & AI Based Buy and Sell Signals - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Runway Growth Finance Corp. - Quarterly Market Summary & Expert Approved Momentum Ideas - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Maywood Acquisition Corp. Debt Equity Composite Units recovery - Market Growth Summary & Weekly Breakout Watchlists... - August 24th, 2025 [August 24th, 2025]
- The Role of AI and Machine Learning in Personalizing Short Video Content - Vocal - August 22nd, 2025 [August 22nd, 2025]
- Optimization and predictive performance of fly ash-based sustainable concrete using integrated multitask deep learning framework with interpretable... - August 22nd, 2025 [August 22nd, 2025]
- Balancing ethics and statistics: machine learning facilitates highly accurate classification of mice according to their trait anxiety with reduced... - August 22nd, 2025 [August 22nd, 2025]
- Researchers use machine learning to predict dengue fever with 80% accuracy - Northeastern Global News - August 22nd, 2025 [August 22nd, 2025]
- Supervised machine learning algorithms for the classification of obesity levels using anthropometric indices derived from bioelectrical impedance... - August 22nd, 2025 [August 22nd, 2025]
- Machine learning aided optoelectric characterization modelling and prediction of the IV parameters of perovskite solar cells with > 90% accuracy -... - August 22nd, 2025 [August 22nd, 2025]
- Improvement of robot learning with combination of decision making and machine learning for water analysis - EurekAlert! - August 22nd, 2025 [August 22nd, 2025]
- Machine learning and SHAP values explain the association between social determinants of health and post-stroke depression - BMC Public Health - August 22nd, 2025 [August 22nd, 2025]
- Systematic selection of best performing mathematical models for in vitro gas production using machine learning across diverse feeds - Nature - August 22nd, 2025 [August 22nd, 2025]
- YouTubes Using Machine Learning to Improve the Look of Your Shorts Clips - Social Media Today - August 20th, 2025 [August 20th, 2025]
- Machine learning based on pangenome-wide association studies reveals the impact of host source on the zoonotic potential of closely related bacterial... - August 20th, 2025 [August 20th, 2025]
- Machine learning model for early diagnosis of breast cancer based on PiRNA expression with CA153 - Nature - August 20th, 2025 [August 20th, 2025]
- Automatic detection of cognitive events using machine learning and understanding models interpretations of human cognition - Nature - August 20th, 2025 [August 20th, 2025]
- Damon Evolves I/O Platform with Advanced Machine Learning for Adaptive Rider Performance - Motor Sports Newswire - August 20th, 2025 [August 20th, 2025]
- Predictive modeling of asthma drug properties using machine learning and topological indices in a MATLAB based QSPR study - Nature - August 20th, 2025 [August 20th, 2025]
- Saturday Citations: A new category of supernovas; neurons beat machine learning; depression and vitiligo - Phys.org - August 18th, 2025 [August 18th, 2025]
- Agentic AI Is The New Vaporware - Machine Learning Week 2025 - August 18th, 2025 [August 18th, 2025]
- ReactorNet based on machine learning framework to identify control rod position for real time monitoring in PWRs - Nature - August 18th, 2025 [August 18th, 2025]
- Low-cost fabrication and comparative evaluation of machine learning algorithms for flexible PDMS-based hexagonal patch antenna - Nature - August 18th, 2025 [August 18th, 2025]
- Digital biomarkers for interstitial glucose prediction in healthy individuals using wearables and machine learning - Nature - August 18th, 2025 [August 18th, 2025]
- Integrative machine learning models predict prostate cancer diagnosis and biochemical recurrence risk: Advancing precision oncology - Nature - August 18th, 2025 [August 18th, 2025]
- Predicting onset of myopic refractive error in children using machine learning on routine pediatric eye examinations only - Nature - August 18th, 2025 [August 18th, 2025]
- Advanced machine learning framework for thyroid cancer epidemiology in Iran through integration of environmental socioeconomic and health system... - August 18th, 2025 [August 18th, 2025]
- Year-round daily wildfire prediction and key factor analysis using machine learning: a case study of Gangwon State, South Korea - Nature - August 18th, 2025 [August 18th, 2025]
- Comparing the effect of pre-anesthesia clonidine and tranexamic acid on intraoperative bleeding volume in rhinoplasty: a machine learning approach -... - August 18th, 2025 [August 18th, 2025]
- Exploring the role of lipid metabolism related genes and immune microenvironment in periodontitis by integrating machine learning and bioinformatics... - August 18th, 2025 [August 18th, 2025]
- From Data to Delivery: Leveraging AI and Machine Learning in Network Planning - Tech Times - August 18th, 2025 [August 18th, 2025]
- Association between the nutritional inflammation index and mortality among patients with sepsis: insights from traditional methods and machine... - August 18th, 2025 [August 18th, 2025]
- C3 AI Selected for Constellation ShortList for Artificial Intelligence and Machine Learning Best-of-Breed Platforms for Q3 2025 - Yahoo Finance - August 14th, 2025 [August 14th, 2025]
- A physicist tackles machine learning black box - The University of Utah - August 14th, 2025 [August 14th, 2025]
- Morgan State University Collaborates with Amazon-Machine Learning University to Bring AI and Machine Learning Education to the Classroom - Morgan... - August 14th, 2025 [August 14th, 2025]
- BEAST-GB model combines machine learning and behavioral science to predict people's decisions - Tech Xplore - August 14th, 2025 [August 14th, 2025]
- Balancing Regulation and Risk of AI and Machine Learning Software in Medical Devices - Infection Control Today - August 14th, 2025 [August 14th, 2025]
- A deep learning model with machine vision system for recognizing type of the food during the food consumption - Nature - August 14th, 2025 [August 14th, 2025]
- Machine learning reveals the mysteries of amorphous alumina thin films at atomic scale - Phys.org - August 14th, 2025 [August 14th, 2025]
- Correction: Machine learning based prediction of cognitive metrics using major biomarkers in SuperAgers - Nature - August 14th, 2025 [August 14th, 2025]
- Transforming Cancer Biomarker Discovery with Machine Learning - the-scientist.com - August 14th, 2025 [August 14th, 2025]
- AI in Precision Agriculture Market Accelerates Adoption of Predictive Analytics and Machine Learning - openPR.com - August 14th, 2025 [August 14th, 2025]
- Improvements from incorporating machine learning algorithms into near real-time operational post-processing - Nature - August 14th, 2025 [August 14th, 2025]
- Data Quality Tools Market Expected to Surge to USD 8.0 Billion by 2033, Driven by AI and Machine Learning Adoption - Vocal - August 12th, 2025 [August 12th, 2025]
- Predicting female football outcomes by machine learning: behavioural analysis of goals as high stress events - Nature - August 12th, 2025 [August 12th, 2025]
- Harnessing Machine Learning and Weak AI to do Smart Things on the Production Floor - AdvancedManufacturing.org - August 12th, 2025 [August 12th, 2025]
- The Role of AI in Predicting Customer Churn Beyond Traditional Metrics - Machine Learning Week 2025 - August 12th, 2025 [August 12th, 2025]
- Towards better earthquake risk assessment with machine learning and geological survey data - Tech Xplore - August 12th, 2025 [August 12th, 2025]
- AI and Machine Learning - Philadelphia calls for climate resilience partners - Smart Cities World - August 12th, 2025 [August 12th, 2025]
- Exploring the Potential of Machine Learning in Optimizing Respiratory Failure Treatment - AJMC - August 9th, 2025 [August 9th, 2025]
- Decoding macrophage immune responses with gene editing and machine learning - News-Medical - August 9th, 2025 [August 9th, 2025]
- Application of causal forest double machine learning (DML) approach to assess tuberculosis preventive therapys impact on ART adherence - Nature - August 9th, 2025 [August 9th, 2025]
- Serum peptide biomarkers by MALDI-TOF MS coupled with machine learning for diagnosis and classification of hepato-pancreato-biliary cancers - Nature - August 9th, 2025 [August 9th, 2025]
- Machine learning based analysis of leucocyte cell population data by Sysmex XN series hematology analyzer for the diagnosis of bacteremia - Nature - August 9th, 2025 [August 9th, 2025]
- Predicting COVID-19 severity in pediatric patients using machine learning: a comparative analysis of algorithms and ensemble methods - Nature - August 9th, 2025 [August 9th, 2025]
- Impact of massive open online courses in higher education using machine learning and decision based fuzzy frank power aggregation operators models -... - August 9th, 2025 [August 9th, 2025]
- Machine learning improves earthquake risk assessment and foundation planning - Open Access Government - August 9th, 2025 [August 9th, 2025]
- How machine learning can tell who with schizophrenia will respond to treatment. - Psychology Today - August 7th, 2025 [August 7th, 2025]
- City Colleges of Chicago and Amazon-MLU bring enhanced Artificial Intelligence and Machine Learning to the colleges faculty - colleges.ccc.edu - August 7th, 2025 [August 7th, 2025]
- Machine learning derived development and validation of extracellular matrix related signature for predicting prognosis in adolescents and young adults... - August 7th, 2025 [August 7th, 2025]
- Alzheimers disease risk prediction using machine learning for survival analysis with a comorbidity-based approach - Nature - August 7th, 2025 [August 7th, 2025]
- Machine learning models highlight environmental and genetic factors associated with the Arabidopsis circadian clock - Nature - August 7th, 2025 [August 7th, 2025]
- AI-derived CT biomarker score for robust COVID-19 mortality prediction across multiple waves and regions using machine learning - Nature - August 7th, 2025 [August 7th, 2025]
- Alcorn State partners with AWS-Machine Learning University to integrate AI in classrooms - WJTV - August 7th, 2025 [August 7th, 2025]
- Why Machine Learning is the Next Big Thing in Diabetes Care and CGM - AZoRobotics - August 7th, 2025 [August 7th, 2025]
- D-Wave launches open-source quantum AI toolkit to accelerate machine learning innovation - Mugglehead Magazine - August 7th, 2025 [August 7th, 2025]
- Machine learning algorithms to predict the risk of admission to intensive care units in HIV-infected individuals: a single-centre study - Virology... - August 6th, 2025 [August 6th, 2025]
- Novel machine learning algorithm could boost detection of familial hypercholesterolemia - Healio - August 6th, 2025 [August 6th, 2025]
- Introducing the Signal and Image Processing and Machine Learning (SIPML) Certificate - University of Michigan - August 6th, 2025 [August 6th, 2025]
- AI to Predict Suicide: The Case for Interpretable Machine Learning - Think Global Health - August 6th, 2025 [August 6th, 2025]
- Machine learning based optimization of titanium electropolishing using artificial neural networks and Taguchi design in eco-friendly electrolytes -... - August 6th, 2025 [August 6th, 2025]