How to build healthcare predictive models using PyHealth? – Analytics India Magazine
Machine learning has been applied to many health-related tasks, such as the development of new medical treatments, the management of patient data and records, and the treatment of chronic diseases. To achieve success in those SOTA applications, we must rely on the time-consuming technique of model building evaluation. To alleviate this load, Yue Zhao et al have proposed a PyHealth, a Python-based toolbox. As the name implies, this toolbox contains a variety of ML models and architecture algorithms for working with medical data. In this article, we will go through this model to understand its working and application. Below are the major points that we are going to discuss in this article.
Lets first discuss the use case of machine learning in the healthcare industry.
Machine learning is being used in a variety of healthcare settings, from case management of common chronic conditions to leveraging patient health data in conjunction with environmental factors such as pollution exposure and weather.
Machine learning technology can assist healthcare practitioners in developing accurate medication treatments tailored to individual features by crunching enormous amounts of data. The following are some examples of applications that can be addressed in this segment:
The ability to swiftly and properly diagnose diseases is one of the most critical aspects of a successful healthcare organization. In high-need areas like cancer diagnosis and therapy, where hundreds of drugs are now in clinical trials, scientists and computationalists are entering the mix. One method combines cognitive computing with genetic tumour sequencing, while another makes use of machine learning to provide diagnosis and treatment in a range of fields, including oncology.
Medical imaging, and its ability to provide a complete picture of an illness, is another important aspect in diagnosing an illness. Deep learning is becoming more accessible as data sources become more diverse, and it may be used in the diagnostic process, therefore it is becoming increasingly important. Although these machine learning applications are frequently correct, they have some limitations in that they cannot explain how they came to their conclusions.
ML has the potential to identify new medications with significant economic benefits for pharmaceutical companies, hospitals, and patients. Some of the worlds largest technology companies, like IBM and Google, have developed ML systems to help patients find new treatment options. Precision medicine is a significant phrase in this area since it entails understanding mechanisms underlying complex disorders and developing alternative therapeutic pathways.
Because of the high-risk nature of surgeries, we will always need human assistance, but machine learning has proved extremely helpful in the robotic surgery sector. The da Vinci robot, which allows surgeons to operate robotic arms in order to do surgery with great detail and in confined areas, is one of the most popular breakthroughs in the profession.
These hands are generally more accurate and steady than human hands. There are additional instruments that employ computer vision and machine learning to determine the distances between various body parts so that surgery can be performed properly.
Health data is typically noisy, complicated, and heterogeneous, resulting in a diverse set of healthcare modelling issues. For instance, health risk prediction is based on sequential patient data, disease diagnosis based on medical images, and risk detection based on continuous physiological signals.
Electroencephalogram (EEG) or electrocardiogram (ECG), for example, and multimodal clinical notes (e.g., text and images). Despite their importance in healthcare research and clinical decision making, the complexity and variability of health data and tasks need the long-overdue development of a specialized ML system for benchmarking predictive health models.
PyHealth is made up of three modules: data preprocessing, predictive modelling, and assessment. Both computer scientists and healthcare data scientists are PyHealths target consumers. They can run complicated machine learning processes on healthcare datasets in less than 10 lines of code using PyHealth.
The data preprocessing module converts complicated healthcare datasets such as longitudinal electronic health records, medical pictures, continuous signals (e.g., electrocardiograms), and clinical notes into machine learning-friendly formats.
The predictive modelling module offers over 30 machine learning models, including known ensemble trees and deep neural network-based approaches, using a uniform yet flexible API geared for both researchers and practitioners.
The evaluation module includes a number of evaluation methodologies (for example, cross-validation and train-validation-test split) as well as prediction model metrics.
There are five distinct advantages to using PyHealth. For starters, it contains more than 30 cutting-edge predictive health algorithms, including both traditional techniques like XGBoost and more recent deep learning architectures like autoencoders, convolutional based, and adversarial based models.
Second, PyHealth has a broad scope and includes models for a variety of data types, including sequence, image, physiological signal, and unstructured text data. Third, for clarity and ease of use, PyHealth includes a unified API, detailed documentation, and interactive examples for all algorithmscomplex deep learning models can be implemented in less than ten lines of code.
Fourth, unit testing with cross-platform, continuous integration, code coverage, and code maintainability checks are performed on most models in PyHealth. Finally, for efficiency and scalability, parallelization is enabled in select modules (data preprocessing), as well as fast GPU computation for deep learning models via PyTorch.
PyHealth is a Python 3 application that uses NumPy, scipy, scikit-learn, and PyTorch. As shown in the diagram below, PyHealth consists of three major modules: First is the data preprocessing module can validate and convert user input into a format that learning models can understand;
Second is the predictive modelling module is made up of a collection of models organized by input data type into sequences, images, EEG, and text. For each data type, a set of dedicated learning models has been implemented, and the third is the evaluation module can automatically infer the task type, such as multi-classification, and conduct a comprehensive evaluation by task type.
Most learning models share the same interface and are inspired by the scikit-API learn to design and general deep learning design: I fit learns the weights and saves the necessary statistics from the train and validation data; load model chooses the model with the best validation accuracy, and inference predicts the incoming test data.
For quick data and model exploration, the framework includes a library of helper and utility functions (check parameter, label check, and partition estimators). For example, a label check can check the data label and infer the task type, such as binary classification or multi-classification, automatically.
PyHealth for model building
Now below well discuss how we can leverage the API of this framework. First, we need to install the package by using pip.
! pip install pyhealth
Next, we can load the data from the repository itself. For that, we need to clone the repository. After cloning the repository inside the datasets folder there is a variety of datasets like sequenced based, image-based, etc. We are using the mimic dataset and it is in the zip form we need to unzip it. Below is the snippet clone repository, and unzip the data.
The unzipped file is saved in the current working directory with the name of the folder as a mimic. Next to use this dataset we need to load the sequence data generator function which serves as functionality to prepare the dataset for experimentation.
Now we have loaded the dataset. Now we can do further modelling as below.
Here is the fitment result.
Through this article, we have discussed how machine learning can be used in the healthcare industry by observing the various applications. As this domain is being quite vast and N number application, we have discussed a Python-based toolbox that is designed to build a predictive modelling approach by using various deep learning techniques such as LSTM, GRU for sequence data, and CNN for image-based data.
Read the original here:
How to build healthcare predictive models using PyHealth? - Analytics India Magazine
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]