How to build healthcare predictive models using PyHealth? – Analytics India Magazine
Machine learning has been applied to many health-related tasks, such as the development of new medical treatments, the management of patient data and records, and the treatment of chronic diseases. To achieve success in those SOTA applications, we must rely on the time-consuming technique of model building evaluation. To alleviate this load, Yue Zhao et al have proposed a PyHealth, a Python-based toolbox. As the name implies, this toolbox contains a variety of ML models and architecture algorithms for working with medical data. In this article, we will go through this model to understand its working and application. Below are the major points that we are going to discuss in this article.
Lets first discuss the use case of machine learning in the healthcare industry.
Machine learning is being used in a variety of healthcare settings, from case management of common chronic conditions to leveraging patient health data in conjunction with environmental factors such as pollution exposure and weather.
Machine learning technology can assist healthcare practitioners in developing accurate medication treatments tailored to individual features by crunching enormous amounts of data. The following are some examples of applications that can be addressed in this segment:
The ability to swiftly and properly diagnose diseases is one of the most critical aspects of a successful healthcare organization. In high-need areas like cancer diagnosis and therapy, where hundreds of drugs are now in clinical trials, scientists and computationalists are entering the mix. One method combines cognitive computing with genetic tumour sequencing, while another makes use of machine learning to provide diagnosis and treatment in a range of fields, including oncology.
Medical imaging, and its ability to provide a complete picture of an illness, is another important aspect in diagnosing an illness. Deep learning is becoming more accessible as data sources become more diverse, and it may be used in the diagnostic process, therefore it is becoming increasingly important. Although these machine learning applications are frequently correct, they have some limitations in that they cannot explain how they came to their conclusions.
ML has the potential to identify new medications with significant economic benefits for pharmaceutical companies, hospitals, and patients. Some of the worlds largest technology companies, like IBM and Google, have developed ML systems to help patients find new treatment options. Precision medicine is a significant phrase in this area since it entails understanding mechanisms underlying complex disorders and developing alternative therapeutic pathways.
Because of the high-risk nature of surgeries, we will always need human assistance, but machine learning has proved extremely helpful in the robotic surgery sector. The da Vinci robot, which allows surgeons to operate robotic arms in order to do surgery with great detail and in confined areas, is one of the most popular breakthroughs in the profession.
These hands are generally more accurate and steady than human hands. There are additional instruments that employ computer vision and machine learning to determine the distances between various body parts so that surgery can be performed properly.
Health data is typically noisy, complicated, and heterogeneous, resulting in a diverse set of healthcare modelling issues. For instance, health risk prediction is based on sequential patient data, disease diagnosis based on medical images, and risk detection based on continuous physiological signals.
Electroencephalogram (EEG) or electrocardiogram (ECG), for example, and multimodal clinical notes (e.g., text and images). Despite their importance in healthcare research and clinical decision making, the complexity and variability of health data and tasks need the long-overdue development of a specialized ML system for benchmarking predictive health models.
PyHealth is made up of three modules: data preprocessing, predictive modelling, and assessment. Both computer scientists and healthcare data scientists are PyHealths target consumers. They can run complicated machine learning processes on healthcare datasets in less than 10 lines of code using PyHealth.
The data preprocessing module converts complicated healthcare datasets such as longitudinal electronic health records, medical pictures, continuous signals (e.g., electrocardiograms), and clinical notes into machine learning-friendly formats.
The predictive modelling module offers over 30 machine learning models, including known ensemble trees and deep neural network-based approaches, using a uniform yet flexible API geared for both researchers and practitioners.
The evaluation module includes a number of evaluation methodologies (for example, cross-validation and train-validation-test split) as well as prediction model metrics.
There are five distinct advantages to using PyHealth. For starters, it contains more than 30 cutting-edge predictive health algorithms, including both traditional techniques like XGBoost and more recent deep learning architectures like autoencoders, convolutional based, and adversarial based models.
Second, PyHealth has a broad scope and includes models for a variety of data types, including sequence, image, physiological signal, and unstructured text data. Third, for clarity and ease of use, PyHealth includes a unified API, detailed documentation, and interactive examples for all algorithmscomplex deep learning models can be implemented in less than ten lines of code.
Fourth, unit testing with cross-platform, continuous integration, code coverage, and code maintainability checks are performed on most models in PyHealth. Finally, for efficiency and scalability, parallelization is enabled in select modules (data preprocessing), as well as fast GPU computation for deep learning models via PyTorch.
PyHealth is a Python 3 application that uses NumPy, scipy, scikit-learn, and PyTorch. As shown in the diagram below, PyHealth consists of three major modules: First is the data preprocessing module can validate and convert user input into a format that learning models can understand;
Second is the predictive modelling module is made up of a collection of models organized by input data type into sequences, images, EEG, and text. For each data type, a set of dedicated learning models has been implemented, and the third is the evaluation module can automatically infer the task type, such as multi-classification, and conduct a comprehensive evaluation by task type.
Most learning models share the same interface and are inspired by the scikit-API learn to design and general deep learning design: I fit learns the weights and saves the necessary statistics from the train and validation data; load model chooses the model with the best validation accuracy, and inference predicts the incoming test data.
For quick data and model exploration, the framework includes a library of helper and utility functions (check parameter, label check, and partition estimators). For example, a label check can check the data label and infer the task type, such as binary classification or multi-classification, automatically.
PyHealth for model building
Now below well discuss how we can leverage the API of this framework. First, we need to install the package by using pip.
! pip install pyhealth
Next, we can load the data from the repository itself. For that, we need to clone the repository. After cloning the repository inside the datasets folder there is a variety of datasets like sequenced based, image-based, etc. We are using the mimic dataset and it is in the zip form we need to unzip it. Below is the snippet clone repository, and unzip the data.
The unzipped file is saved in the current working directory with the name of the folder as a mimic. Next to use this dataset we need to load the sequence data generator function which serves as functionality to prepare the dataset for experimentation.
Now we have loaded the dataset. Now we can do further modelling as below.
Here is the fitment result.
Through this article, we have discussed how machine learning can be used in the healthcare industry by observing the various applications. As this domain is being quite vast and N number application, we have discussed a Python-based toolbox that is designed to build a predictive modelling approach by using various deep learning techniques such as LSTM, GRU for sequence data, and CNN for image-based data.
Read the original here:
How to build healthcare predictive models using PyHealth? - Analytics India Magazine
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]