How This CEO is Using Synthetic Data to Reshape Machine Learning for Real-World Applications – Yahoo Finance
Artificial Intelligence (AI) and Machine Learning (ML) are certainly not new industries. As early as the 1950s, the term machine learning was introduced by IBM AI pioneer Arthur Samuel. It has been in recent years wherein AI and ML have seen significant growth. IDC, for one, estimates the market for AI to be valued at $156.5 billion in 2020 with a 12.3 percent growth over 2019. Even amid global economic uncertainties, this market is set to grow to $300 billion by 2024, a compound annual growth of 17.1 percent.
There are challenges to be overcome, however, as AI becomes increasingly interwoven into real-world applications and industries. While AI has seen meaningful use in behavioral analysis and marketing, for instance, it is also seeing growth in many business processes.
"The role of AI Applications in enterprises is rapidly evolving. It is transforming how your customers buy, your suppliers deliver, and your competitors compete. AI applications continue to be at the forefront of digital transformation (DX) initiatives, driving both innovation and improvement to business operations," said Ritu Jyoti, program vice president, Artificial Intelligence Research at IDC.
Even with the increasing utilization of sensors and internet-of-things, there is only so much that machines can learn from real-world environments. The limitations come in the form of cost and replicable scenarios. Heres where synthetic data will play a big part
Dor Herman
We need to teach algorithms what it is exactly that we want them to look for, and thats where ML comes in. Without getting too technical, algorithms need a training process, where they go through incredible amounts of annotated data, data that has been marked with different identifiers. And this is, finally, where synthetic data comes in, says Dor Herman, Co-Founder and Chief Executive Officer of OneView, a Tel Aviv-based startup that accelerates ML training with the use of synthetic data.
Story continues
Herman says that real-world data can oftentimes be either inaccessible or too expensive to use for training AI. Thus, synthetic data can be generated with built-in annotations in order to accelerate the training process and make it more efficient. He cites four distinct advantages of using synthetic data over real-world data in ML: cost, scale, customization, and the ability to train AI to make decisions on scenarios that are not likely to occur in real-world scenarios.
You can create synthetic data for everything, for any use case, which brings us to the most important advantage of synthetic data--its ability to provide training data for even the rarest occurrences that by their nature dont have real coverage.
Herman gives the example of oil spills, weapons launches, infrastructure damage, and other such catastrophic or rare events. Synthetic data can provide the needed data, data that could have not been obtained in the real world, he says.
Herman cites a case study wherein a client needed AI to detect oil spills. Remember, algorithms need a massive amount of data in order to learn what an oil spill looks like and the company didnt have numerous instances of oil spills, nor did it have aerial images of it.
Since the oil company utilized aerial images for ongoing inspection of their pipelines, OneView applied synthetic data instead. we created, from scratch, aerial-like images of oil spills according to their needs, meaning, in various weather conditions, from different angles and heights, different formations of spills--where everything is customized to the type of airplanes and cameras used.
This would have been an otherwise costly endeavor. Without synthetic data, they would never be able to put algorithms on the detection mission and will need to continue using folks to go over hours and hours of detection flights every day.
With synthetic data, users can define the parameters for training AI, in order for better decision-making once real-world scenarios occur. The OneView platform can generate data customized to their needs. An example involves training computer vision to detect certain inputs based on sensor or visual data.
You input your desired sensor, define the environment and conditions like weather, time of day, shooting angles and so on, add any objects-of-interest--and our platform generates your data; fully annotated, ready for machine learning model training datasets, says Herman.
Annotation also has advantages over real-world data, which will often require manual annotation, which takes extensive time and cost to process. The swift and automated process that produces hundreds of thousands of images replaces a manual, prolonged, cumbersome and error-prone process that hinders computer vision ML algorithms from racing forward, he adds.
OneViews synthetic data generation involves a six-layer process wherein 3D models are created using gaming engines and then flattened to create 2D images.
We start with the layout of the scene so to speak, where the basic elements of the environment are laid out The next step is the placement of objects-of-interest that are the goal of detection, the objects that the algorithms will be trained to discover. We also put in distractors, objects that are similar so the algorithms can learn how to differentiate the goal object from similar-looking objects. Then the appearance building stage follows, when colors, textures, random erosions, noises, and other detailed visual elements are added to mimic how real images look like, with all their imperfections, Herman shares.
The fourth step involves the application of conditions such as weather and time of the day. For the fifth step, sensor parameters (the camera lens type) are implemented, meaning, we adapt the entire image to look like it was taken by a specific remote sensing system, resolution-wise, and other unique technical attributes each system has. Lastly, annotations are added.
Annotations are the marks that are used to define to the algorithm what it is looking at. For example, the algorithm can be trained that this is a car, this is a truck, this is an airplane, and so on. The resulting synthetic datasets are ready for machine learning model training.
For Herman, the biggest contribution of synthetic data is actually paradoxical. By using synthetic data, AI and AI users get a better understanding of the real world and how it works--through machine learning. Image analytics comes with bottlenecks in processing, and computer vision algorithms cannot scale unless this bottleneck is overcome.
Remote sensing data (imagery captured by satellites, airplanes and drones) provides a unique channel to uncover valuable insights on a very large scale for a wide spectrum of industries. In order to do that, you need computer vision AI as a way to study these vast amounts of data collected and return intelligence, Herman explains.
Next, this intelligence is transformed to insights that help us better understand this planet we live on, and of course drive decision making, whether by governments or businesses. The massive growth in computing power enabled the flourishing of AI in recent years, but the collection and preparation of data for computer vision machine learning is the fundamental factor that holds back AI.
He circles back to how OneView intends to reshape machine learning: releasing this bottleneck with synthetic data so the full potential of remote sensing imagery analytics can be realized and thus a better understanding of earth emerges.
The main driver behind Artificial Intelligence and Machine Learning is, of course, business and economic value. Countries, enterprises, businesses, and other stakeholders benefit from the advantages that AI offers, in terms of decision-making, process improvement, and innovation.
The Big message OneView brings is that we enable a better understanding of our planet through the empowerment of computer vision, concludes Herman. Synthetic data is not fake data. Rather, it is purpose-built inputs that enable faster, more efficient, more targeted, and cost-effective machine learning that will be responsive to the needs of real-world decision-making processes.
- How banks are responsibly embedding machine learning and GenAI into AML surveillance - Compliance Week - January 20th, 2026 [January 20th, 2026]
- Enhancing Teaching and Learning of Vocational Skills through Machine Learning and Cognitive Training (MCT) - Amrita Vishwa Vidyapeetham - January 20th, 2026 [January 20th, 2026]
- New Research in Annals of Oncology Shows Machine Learning Revelation of Global Cancer Trend Drivers - Oncodaily - January 20th, 2026 [January 20th, 2026]
- Machine learning-assisted mapping of VT ablation targets: progress and potential - Hospital Healthcare Europe - January 20th, 2026 [January 20th, 2026]
- Machine Learning Achieves Runtime Optimisation for GEMM with Dynamic Thread Selection - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- Machine learning algorithm predicts Bitcoin price on January 31, 2026 - Finbold - January 20th, 2026 [January 20th, 2026]
- AI and Machine Learning Transform Baldness Detection and Management - Bioengineer.org - January 20th, 2026 [January 20th, 2026]
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]