How Telecom Companies Can Leverage Machine Learning To Boost Their Profits – Forbes
The number of smartphone users across the world has skyrocketed over the last decade and promises to do so in the future too. Additionally, most business functions can now be executed on mobile devices. However, despite the mobile surge, telecom operators around the world are still not that profitable, with average net profit margins hovering around the 17% mark. The main reasons for the middling profit rates are the high number of market rivals vouching for the same customer base and the high overhead expenses associated with the sector. Communication Service Providers (CSPs) need to become more data-driven to reduce such costs and, automatically, improve their profit margins. Increasing the involvement of AI in telecom operations enables telecom companies to make this switch from rigid, infrastructure-driven operations to a data-driven approach seamlessly.
The inclusion of AI in telecom functional areas positively impacts the bottom line of CSPs in several ways. Businesses can use specific capabilities, avatars or applications of machine learning and AI for this purpose.
Mobile networks are one of the prime components of the ever-expanding internet community. As stated earlier, a large number of internet users and business operations have gone mobile in recent times. Additionally, the emergence of 5G and edge applications, and the impending arrival of the metaverse, will simply increase the need for high-performance telecom networks. It is very likely that the standard automation tech and personnel will be overwhelmed by the relentless pressure of high-speed network connectivity and mobile calls.
The use of AI in telecom operations can transform an underperforming mobile network into a self-optimizing network (SON). Telecom businesses can monitor network equipment and anticipate equipment failure with AI-powered predictive analysis. Additionally, AI-based tools allow CSPs to keep network quality consistently high by monitoring key performance indicators such as traffic on a zone-to-zone basis. Apart from monitoring the performance of equipment, machine learning algorithms can also continually run pattern recognition while scanning network data to detect anomalies. Then, AI-based systems can either perform remedial actions or notify the network administrator and engineers in the region where the anomaly was detected. This enables telecom companies to fix network issues at source before they adversely impact customers.
Network security is another area of focus for telecom operators. Of late, the rising security issues in telecom networks have been a point of concern for CSPs globally. AI-based data security tools allow telecom companies to constantly monitor the cyber health of their networks. Machine learning algorithms perform analysis of global data networks and past security incidents to make key predictions of existing network vulnerabilities. In other words, AI-based network security tools enable telecom businesses to pre-empt future security complications and proactively take preventive measures to deal with them.
Ultimately, AI improves telecom networks in multiple ways. By improving the performance, anomaly detection and security of CSP networks, machine learning algorithms can enhance the user experience for telecom company clients. This will result in a growth of such companies customer base in the long term, and, by extension, an increase in profits.
How Telecom Companies Can Leverage Machine Learning To Boost Their Profits
The Europol classifies the telecom sector to be particularly vulnerable to fraud. Telecom fraud involves the abuse of telecommunications systems such as mobile phones and tablets by criminals to siphon money off CSPs. As per a recent study, telecom fraud accounted for losses of US$40.1 billionapproximately 1.88% of the total revenue of telecom operators. One of the common types of telecom fraud is International Revenue Sharing Fraud (IRSF). IRSF involves criminals linking up with International Premium Rate Number (IPRN) providers to illegally acquire money from telecom companies by using bots to make an absurdly high number of international calls of long duration. Such calls are difficult to trace. Additionally, telecom companies cannot bill clients for such premium calls as the connections are fraudulent. So, telecom operators end up bearing the losses for such calls. The IPRNs and criminals share the spoils between themselves. Apart from IRSF, vishing (a portmanteau for voice calls and phishing attacks) is a way in which malicious entities dupe clients of telecom companies to extract money and data. The involvement of AI in telecom operations enables CSPs to detect and eliminate these kinds of fraud.
Machine learning algorithms assist telecom network engineers with detecting instances of illegal access, fake caller profiles and cloning. To achieve this, the algorithms perform behavioral monitoring of the global telecom networks of CSPs. Accordingly, the network traffic along such networks is closely monitored. The pattern recognition capabilities of AI algorithms come into play again as they enable network administrators to identify contentious scenarios such as several calls being made from a fraudulent number, or blank callsa general indicator of vishingbeing repeatedly made from questionable sources. One of the more prominent examples of telecom companies using data analytics for fraud detection and prevention is Vodafones partnership with Argyle Data. The data science-based firm analyzes the network traffic of the telecom giant for intelligent, data-driven fraud management.
Detecting and eliminating telecom fraud are major steps towards increasing the profit margins of CSPs. As you can see, the role of AI in telecom operations is significant for achieving this objective.
To reliably serve millions of clients, telecom companies need to have a massive workforce that can handle their backend operations on a daily basis efficiently. Dealing with such a large volume of customers creates several opportunities for human error.
Telecom companies can employ cognitive computinga robotics-based field that involves Natural Language Processing (NLP), Robotic Process Automation (RPA) and rule enginesto automate the rule-based processes such as sending marketing emails, autocompleting e-forms, recording data and carrying out certain tasks that can replicate human actions. The use of AI in telecom operations brings greater accuracy in back-office operations. As per a study conducted by Deloitte, several executives in the telecom, media and tech industry felt that the use of cognitive computing for backend operations brought substantial and transformative benefits to their respective businesses.
Customer sentiment analysis involves a set of data classification and analysis tasks carried out to understand the pulse of customers. This allows telecom companies to evaluate whether their clients like or dislike their services based on raw emotions. Marketers can use NLP and AI to sense the "mood" of their customers from their texts, emails or social media posts bearing a telecom companys name. Aspect-based sentiment analytics highlight the exact service areas in which customers have problems. For example, if a customer is upset about the number of calls getting dropped regularly and writes a long and incoherent email to a telcos customer service team about it, the machine learning algorithms employed for sentiment analysis can still autonomously ascertain their mood (angry) and the problem (the call drop rate).
Apart from sentiment analysis, telecom businesses can hugely benefit from the growing emergence of chatbots and virtual assistants. Service requests for network set-ups, installation, troubleshooting and maintenance-based issues can be resolved through such machine learning-based tools and applications. Virtual assistants enable CRM teams in telecom companies to manage a large number of customers with ease. In this way, CSPs can manage customer service and sentiment analysis successfully.
Across the board, users generally cite the quality of their telecom customer service to be below satisfactory. Telecom users are constantly infuriated by long waiting times to get to a service executive, unanswered complaint emails and poor grievance handling by CSPs. Poor CRM does not bode well for telecom companies as it maligns their reputation and diminishes shareholder confidence. By implementing machine learning for CRM, telecom companies can address such issues efficiently.
Like businesses in any other sector, telecom companies need to boost their profits for long-term survival and diversification. As stated at the beginning, there are multiple factors that thwart their chances of profit generation. Going down the data science route is one of the novel ways to overcome such challenges. By involving AI in telecom operations, CSPs can manage their data wisely and channelize their resources towards maximizing revenues.
Despite the positives associated with AI, only a limited percentage of telecom businesses have incorporated the technology for profit maximization. Gradually, one can expect that percentage to rise.
See the article here:
How Telecom Companies Can Leverage Machine Learning To Boost Their Profits - Forbes
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]