How Telecom Companies Can Leverage Machine Learning To Boost Their Profits – Forbes
The number of smartphone users across the world has skyrocketed over the last decade and promises to do so in the future too. Additionally, most business functions can now be executed on mobile devices. However, despite the mobile surge, telecom operators around the world are still not that profitable, with average net profit margins hovering around the 17% mark. The main reasons for the middling profit rates are the high number of market rivals vouching for the same customer base and the high overhead expenses associated with the sector. Communication Service Providers (CSPs) need to become more data-driven to reduce such costs and, automatically, improve their profit margins. Increasing the involvement of AI in telecom operations enables telecom companies to make this switch from rigid, infrastructure-driven operations to a data-driven approach seamlessly.
The inclusion of AI in telecom functional areas positively impacts the bottom line of CSPs in several ways. Businesses can use specific capabilities, avatars or applications of machine learning and AI for this purpose.
Mobile networks are one of the prime components of the ever-expanding internet community. As stated earlier, a large number of internet users and business operations have gone mobile in recent times. Additionally, the emergence of 5G and edge applications, and the impending arrival of the metaverse, will simply increase the need for high-performance telecom networks. It is very likely that the standard automation tech and personnel will be overwhelmed by the relentless pressure of high-speed network connectivity and mobile calls.
The use of AI in telecom operations can transform an underperforming mobile network into a self-optimizing network (SON). Telecom businesses can monitor network equipment and anticipate equipment failure with AI-powered predictive analysis. Additionally, AI-based tools allow CSPs to keep network quality consistently high by monitoring key performance indicators such as traffic on a zone-to-zone basis. Apart from monitoring the performance of equipment, machine learning algorithms can also continually run pattern recognition while scanning network data to detect anomalies. Then, AI-based systems can either perform remedial actions or notify the network administrator and engineers in the region where the anomaly was detected. This enables telecom companies to fix network issues at source before they adversely impact customers.
Network security is another area of focus for telecom operators. Of late, the rising security issues in telecom networks have been a point of concern for CSPs globally. AI-based data security tools allow telecom companies to constantly monitor the cyber health of their networks. Machine learning algorithms perform analysis of global data networks and past security incidents to make key predictions of existing network vulnerabilities. In other words, AI-based network security tools enable telecom businesses to pre-empt future security complications and proactively take preventive measures to deal with them.
Ultimately, AI improves telecom networks in multiple ways. By improving the performance, anomaly detection and security of CSP networks, machine learning algorithms can enhance the user experience for telecom company clients. This will result in a growth of such companies customer base in the long term, and, by extension, an increase in profits.
How Telecom Companies Can Leverage Machine Learning To Boost Their Profits
The Europol classifies the telecom sector to be particularly vulnerable to fraud. Telecom fraud involves the abuse of telecommunications systems such as mobile phones and tablets by criminals to siphon money off CSPs. As per a recent study, telecom fraud accounted for losses of US$40.1 billionapproximately 1.88% of the total revenue of telecom operators. One of the common types of telecom fraud is International Revenue Sharing Fraud (IRSF). IRSF involves criminals linking up with International Premium Rate Number (IPRN) providers to illegally acquire money from telecom companies by using bots to make an absurdly high number of international calls of long duration. Such calls are difficult to trace. Additionally, telecom companies cannot bill clients for such premium calls as the connections are fraudulent. So, telecom operators end up bearing the losses for such calls. The IPRNs and criminals share the spoils between themselves. Apart from IRSF, vishing (a portmanteau for voice calls and phishing attacks) is a way in which malicious entities dupe clients of telecom companies to extract money and data. The involvement of AI in telecom operations enables CSPs to detect and eliminate these kinds of fraud.
Machine learning algorithms assist telecom network engineers with detecting instances of illegal access, fake caller profiles and cloning. To achieve this, the algorithms perform behavioral monitoring of the global telecom networks of CSPs. Accordingly, the network traffic along such networks is closely monitored. The pattern recognition capabilities of AI algorithms come into play again as they enable network administrators to identify contentious scenarios such as several calls being made from a fraudulent number, or blank callsa general indicator of vishingbeing repeatedly made from questionable sources. One of the more prominent examples of telecom companies using data analytics for fraud detection and prevention is Vodafones partnership with Argyle Data. The data science-based firm analyzes the network traffic of the telecom giant for intelligent, data-driven fraud management.
Detecting and eliminating telecom fraud are major steps towards increasing the profit margins of CSPs. As you can see, the role of AI in telecom operations is significant for achieving this objective.
To reliably serve millions of clients, telecom companies need to have a massive workforce that can handle their backend operations on a daily basis efficiently. Dealing with such a large volume of customers creates several opportunities for human error.
Telecom companies can employ cognitive computinga robotics-based field that involves Natural Language Processing (NLP), Robotic Process Automation (RPA) and rule enginesto automate the rule-based processes such as sending marketing emails, autocompleting e-forms, recording data and carrying out certain tasks that can replicate human actions. The use of AI in telecom operations brings greater accuracy in back-office operations. As per a study conducted by Deloitte, several executives in the telecom, media and tech industry felt that the use of cognitive computing for backend operations brought substantial and transformative benefits to their respective businesses.
Customer sentiment analysis involves a set of data classification and analysis tasks carried out to understand the pulse of customers. This allows telecom companies to evaluate whether their clients like or dislike their services based on raw emotions. Marketers can use NLP and AI to sense the "mood" of their customers from their texts, emails or social media posts bearing a telecom companys name. Aspect-based sentiment analytics highlight the exact service areas in which customers have problems. For example, if a customer is upset about the number of calls getting dropped regularly and writes a long and incoherent email to a telcos customer service team about it, the machine learning algorithms employed for sentiment analysis can still autonomously ascertain their mood (angry) and the problem (the call drop rate).
Apart from sentiment analysis, telecom businesses can hugely benefit from the growing emergence of chatbots and virtual assistants. Service requests for network set-ups, installation, troubleshooting and maintenance-based issues can be resolved through such machine learning-based tools and applications. Virtual assistants enable CRM teams in telecom companies to manage a large number of customers with ease. In this way, CSPs can manage customer service and sentiment analysis successfully.
Across the board, users generally cite the quality of their telecom customer service to be below satisfactory. Telecom users are constantly infuriated by long waiting times to get to a service executive, unanswered complaint emails and poor grievance handling by CSPs. Poor CRM does not bode well for telecom companies as it maligns their reputation and diminishes shareholder confidence. By implementing machine learning for CRM, telecom companies can address such issues efficiently.
Like businesses in any other sector, telecom companies need to boost their profits for long-term survival and diversification. As stated at the beginning, there are multiple factors that thwart their chances of profit generation. Going down the data science route is one of the novel ways to overcome such challenges. By involving AI in telecom operations, CSPs can manage their data wisely and channelize their resources towards maximizing revenues.
Despite the positives associated with AI, only a limited percentage of telecom businesses have incorporated the technology for profit maximization. Gradually, one can expect that percentage to rise.
See the article here:
How Telecom Companies Can Leverage Machine Learning To Boost Their Profits - Forbes
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]
- Machine learning analysis reveals tumor heterogeneity and stromal-immune niches in breast cancer - Nature - September 6th, 2025 [September 6th, 2025]
- Identification of Postoperative Weight Loss Trajectories and Development of a Machine Learning-Based Tool for Predicting Malnutrition in Gastric... - September 6th, 2025 [September 6th, 2025]
- The Relationship Between Number of Pregnancies and Serum 25-Hydroxyvitamin D Levels in Women with a Prior Pregnancy: A Cross - Sectional Analysis,... - September 6th, 2025 [September 6th, 2025]
- Tohoku University Researchers Use Machine Learning to Identify Factors Improving Nickel-Based Catalysts for CO Methanation - geneonline.com - September 6th, 2025 [September 6th, 2025]
- Combining machine learning predictions for Galaxy Payroll Group Limited - Quarterly Growth Report & AI Forecast Swing Trade Picks - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast CLSKW recovery - 2025 Breakouts & Breakdowns & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Granite Real Estate Investment Trust recovery - July 2025 Spike Watch & Growth Focused Stock Reports - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VERU recovery - July 2025 Intraday Action & AI Forecasted Entry/Exit Points - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VCI Global Limited recovery - Market Rally & Expert-Curated Trade Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for AutoNation Inc. - Weekly Trend Summary & Weekly Breakout Watchlists - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for PLXS - Options Play & Fast Gain Stock Trading Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Valens Semiconductor Ltd. recovery - July 2025 Action & Free Growth Oriented Trading Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Improve cost visibility of Machine Learning workloads on Amazon EKS with AWS Split Cost Allocation Data - Amazon Web Services - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast LFT.PRA recovery - Weekly Trade Recap & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast TEAM recovery - 2025 Pullback Review & Free Weekly Chart Analysis and Trade Guides - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for MSBIP - Weekly Profit Analysis & AI Powered Market Entry Strategies - Newser - September 5th, 2025 [September 5th, 2025]
- Revolutionizing Antibody Discovery with Machine Learning - BIOENGINEER.ORG - September 5th, 2025 [September 5th, 2025]
- The good and bad of machine learning | Letters - The Guardian - September 3rd, 2025 [September 3rd, 2025]
- I'm a machine learning engineer at Amazon who anticipated the ML boom. Here's my advice for staying ahead. - AOL.com - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Dogwood Therapeutics Inc. - July 2025 Breakouts & Weekly Setup with High ROI Potential - Newser - September 3rd, 2025 [September 3rd, 2025]
- Phenotyping valvular heart diseases using the lens of unsupervised machine learning: a scoping review - Nature - September 3rd, 2025 [September 3rd, 2025]
- Students use machine learning to track and protect whale populations - Technology Org - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Triller Group Inc. Equity Warrant - Gap Up & Weekly High Conviction Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for DallasNews Corporation - Quarterly Trade Report & Technical Entry and Exit Tips - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for System1 Inc. - Weekly Gains Summary & Risk Adjusted Swing Trade Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- Unlocking the impossible without compromising on creative control: iZotope Ozone 12 adds new machine learning modules and a more musician-friendly AI... - September 3rd, 2025 [September 3rd, 2025]
- What machine learning models say about SLND.WS - Quarterly Trade Report & Technical Entry and Exit Tips - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Chemed Corporation - Weekly Stock Recap & Growth Focused Entry Reports - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for TAP.A - Earnings Growth Report & Entry Point Confirmation Alerts - Newser - September 3rd, 2025 [September 3rd, 2025]
- Bridging known and unknown dynamics by transformer-based machine-learning inference from sparse observations - Nature - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Inseego Corp. - July 2025 Retail & Technical Confirmation Trade Alerts - Newser - September 3rd, 2025 [September 3rd, 2025]
- Can machine learning forecast Aditxt Inc. recovery - July 2025 Update & Expert Curated Trade Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- I'm a machine learning engineer at Amazon who anticipated the ML boom. Here's my advice for staying ahead. - Business Insider - September 1st, 2025 [September 1st, 2025]
- Machine learning climbs the Jacobs Ladder of optoelectronic properties - Nature - September 1st, 2025 [September 1st, 2025]
- Predicting factors associated with anxiety by patients undergoing treatment for infectious diseases using a random-forest machine learning approach -... - September 1st, 2025 [September 1st, 2025]
- Hideo Kojima used "an AI machine learning rig" to painstakingly download his celebrity friends to Death Stranding 2, but he wasn't happy... - September 1st, 2025 [September 1st, 2025]
- Fibro predict a machine learning risk score for advanced liver fibrosis in the general population using Israeli electronic health records - Nature - September 1st, 2025 [September 1st, 2025]
- Machine learning for preventing stillbirths: is it possible to transform data into life-saving insights? - BMC Pregnancy and Childbirth - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Kura Sushi USA Inc. recovery - 2025 Fundamental Recap & AI Based Buy and Sell Signals - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for China Liberal Education Holdings Limited - Weekly Profit Recap & Weekly Breakout Watchlists - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Tyson Foods Inc. recovery - 2025 Trade Ideas & Smart Swing Trading Techniques - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast GLBZ recovery - July 2025 Movers & AI Based Buy and Sell Signals - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about Sypris Solutions Inc. - Market Performance Recap & Real-Time Volume Trigger Notifications - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about Astria Therapeutics Inc. - July 2025 News Drivers & Real-Time Buy Signal Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast CRTO recovery - July 2025 Analyst Calls & Growth Focused Investment Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Exelon Corporation recovery - Exit Point & Pattern Based Trade Signal System - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about OFIX - Bond Market & Long-Term Safe Investment Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Beneficient recovery - Weekly Trade Recap & Breakout Confirmation Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast BTBDW recovery - 2025 Geopolitical Influence & Weekly High Momentum Picks - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Tri Pointe Homes Inc. recovery - July 2025 WrapUp & Free Long-Term Investment Growth Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast TeraWulf Inc. recovery - Market Movement Recap & Community Supported Trade Ideas - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for Alset Inc. - 2025 Technical Patterns & Precise Buy Zone Identification - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Exelon Corporation recovery - 2025 Bull vs Bear & Smart Allocation Stock Reports - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Token Cat Limited Depositary Receipt recovery - 2025 Price Action Summary & Breakout Confirmation Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for BT Brands Inc. - Market Performance Recap & Verified Technical Trade Signals - Newser - September 1st, 2025 [September 1st, 2025]
- 7 Beginner Machine Learning Projects To Complete This Weekend - KDnuggets - August 29th, 2025 [August 29th, 2025]
- Machine learning approaches for predicting the construction time of drill-and-blast tunnels - Nature - August 29th, 2025 [August 29th, 2025]
- Combining machine learning predictions for KKR.PRD - July 2025 Closing Moves & Technical Pattern Recognition Alerts - Newser - August 29th, 2025 [August 29th, 2025]
- Leveraging data analytics to revolutionize cybersecurity with machine learning and deep learning - Nature - August 29th, 2025 [August 29th, 2025]
- Can machine learning forecast Yext Inc. recovery - Earnings Performance Report & Accurate Buy Signal Notifications - Newser - August 29th, 2025 [August 29th, 2025]
- Combining machine learning predictions for Mercer International Inc. - July 2025 Highlights & Real-Time Volume Analysis - Newser - August 29th, 2025 [August 29th, 2025]
- Combining machine learning predictions for Kandal M Venture Limited - Inflation Watch & Verified Technical Signals - Newser - August 29th, 2025 [August 29th, 2025]
- Combining machine learning predictions for Asbury Automotive Group Inc. - July 2025 Intraday Action & Daily Volume Surge Signals - Newser - August 29th, 2025 [August 29th, 2025]
- Can machine learning forecast NINE recovery - Quarterly Performance Summary & Technical Entry and Exit Tips - Newser - August 29th, 2025 [August 29th, 2025]
- IQUP identifies quantitatively unreliable spectra with machine learning for isobaric labeling-based proteomics - Nature - August 29th, 2025 [August 29th, 2025]
- Can machine learning forecast HealthEquity Inc. recovery - Exit Point & High Accuracy Buy Signal Tips - Newser - August 29th, 2025 [August 29th, 2025]