How Telecom Companies Can Leverage Machine Learning To Boost Their Profits – Forbes
The number of smartphone users across the world has skyrocketed over the last decade and promises to do so in the future too. Additionally, most business functions can now be executed on mobile devices. However, despite the mobile surge, telecom operators around the world are still not that profitable, with average net profit margins hovering around the 17% mark. The main reasons for the middling profit rates are the high number of market rivals vouching for the same customer base and the high overhead expenses associated with the sector. Communication Service Providers (CSPs) need to become more data-driven to reduce such costs and, automatically, improve their profit margins. Increasing the involvement of AI in telecom operations enables telecom companies to make this switch from rigid, infrastructure-driven operations to a data-driven approach seamlessly.
The inclusion of AI in telecom functional areas positively impacts the bottom line of CSPs in several ways. Businesses can use specific capabilities, avatars or applications of machine learning and AI for this purpose.
Mobile networks are one of the prime components of the ever-expanding internet community. As stated earlier, a large number of internet users and business operations have gone mobile in recent times. Additionally, the emergence of 5G and edge applications, and the impending arrival of the metaverse, will simply increase the need for high-performance telecom networks. It is very likely that the standard automation tech and personnel will be overwhelmed by the relentless pressure of high-speed network connectivity and mobile calls.
The use of AI in telecom operations can transform an underperforming mobile network into a self-optimizing network (SON). Telecom businesses can monitor network equipment and anticipate equipment failure with AI-powered predictive analysis. Additionally, AI-based tools allow CSPs to keep network quality consistently high by monitoring key performance indicators such as traffic on a zone-to-zone basis. Apart from monitoring the performance of equipment, machine learning algorithms can also continually run pattern recognition while scanning network data to detect anomalies. Then, AI-based systems can either perform remedial actions or notify the network administrator and engineers in the region where the anomaly was detected. This enables telecom companies to fix network issues at source before they adversely impact customers.
Network security is another area of focus for telecom operators. Of late, the rising security issues in telecom networks have been a point of concern for CSPs globally. AI-based data security tools allow telecom companies to constantly monitor the cyber health of their networks. Machine learning algorithms perform analysis of global data networks and past security incidents to make key predictions of existing network vulnerabilities. In other words, AI-based network security tools enable telecom businesses to pre-empt future security complications and proactively take preventive measures to deal with them.
Ultimately, AI improves telecom networks in multiple ways. By improving the performance, anomaly detection and security of CSP networks, machine learning algorithms can enhance the user experience for telecom company clients. This will result in a growth of such companies customer base in the long term, and, by extension, an increase in profits.
How Telecom Companies Can Leverage Machine Learning To Boost Their Profits
The Europol classifies the telecom sector to be particularly vulnerable to fraud. Telecom fraud involves the abuse of telecommunications systems such as mobile phones and tablets by criminals to siphon money off CSPs. As per a recent study, telecom fraud accounted for losses of US$40.1 billionapproximately 1.88% of the total revenue of telecom operators. One of the common types of telecom fraud is International Revenue Sharing Fraud (IRSF). IRSF involves criminals linking up with International Premium Rate Number (IPRN) providers to illegally acquire money from telecom companies by using bots to make an absurdly high number of international calls of long duration. Such calls are difficult to trace. Additionally, telecom companies cannot bill clients for such premium calls as the connections are fraudulent. So, telecom operators end up bearing the losses for such calls. The IPRNs and criminals share the spoils between themselves. Apart from IRSF, vishing (a portmanteau for voice calls and phishing attacks) is a way in which malicious entities dupe clients of telecom companies to extract money and data. The involvement of AI in telecom operations enables CSPs to detect and eliminate these kinds of fraud.
Machine learning algorithms assist telecom network engineers with detecting instances of illegal access, fake caller profiles and cloning. To achieve this, the algorithms perform behavioral monitoring of the global telecom networks of CSPs. Accordingly, the network traffic along such networks is closely monitored. The pattern recognition capabilities of AI algorithms come into play again as they enable network administrators to identify contentious scenarios such as several calls being made from a fraudulent number, or blank callsa general indicator of vishingbeing repeatedly made from questionable sources. One of the more prominent examples of telecom companies using data analytics for fraud detection and prevention is Vodafones partnership with Argyle Data. The data science-based firm analyzes the network traffic of the telecom giant for intelligent, data-driven fraud management.
Detecting and eliminating telecom fraud are major steps towards increasing the profit margins of CSPs. As you can see, the role of AI in telecom operations is significant for achieving this objective.
To reliably serve millions of clients, telecom companies need to have a massive workforce that can handle their backend operations on a daily basis efficiently. Dealing with such a large volume of customers creates several opportunities for human error.
Telecom companies can employ cognitive computinga robotics-based field that involves Natural Language Processing (NLP), Robotic Process Automation (RPA) and rule enginesto automate the rule-based processes such as sending marketing emails, autocompleting e-forms, recording data and carrying out certain tasks that can replicate human actions. The use of AI in telecom operations brings greater accuracy in back-office operations. As per a study conducted by Deloitte, several executives in the telecom, media and tech industry felt that the use of cognitive computing for backend operations brought substantial and transformative benefits to their respective businesses.
Customer sentiment analysis involves a set of data classification and analysis tasks carried out to understand the pulse of customers. This allows telecom companies to evaluate whether their clients like or dislike their services based on raw emotions. Marketers can use NLP and AI to sense the "mood" of their customers from their texts, emails or social media posts bearing a telecom companys name. Aspect-based sentiment analytics highlight the exact service areas in which customers have problems. For example, if a customer is upset about the number of calls getting dropped regularly and writes a long and incoherent email to a telcos customer service team about it, the machine learning algorithms employed for sentiment analysis can still autonomously ascertain their mood (angry) and the problem (the call drop rate).
Apart from sentiment analysis, telecom businesses can hugely benefit from the growing emergence of chatbots and virtual assistants. Service requests for network set-ups, installation, troubleshooting and maintenance-based issues can be resolved through such machine learning-based tools and applications. Virtual assistants enable CRM teams in telecom companies to manage a large number of customers with ease. In this way, CSPs can manage customer service and sentiment analysis successfully.
Across the board, users generally cite the quality of their telecom customer service to be below satisfactory. Telecom users are constantly infuriated by long waiting times to get to a service executive, unanswered complaint emails and poor grievance handling by CSPs. Poor CRM does not bode well for telecom companies as it maligns their reputation and diminishes shareholder confidence. By implementing machine learning for CRM, telecom companies can address such issues efficiently.
Like businesses in any other sector, telecom companies need to boost their profits for long-term survival and diversification. As stated at the beginning, there are multiple factors that thwart their chances of profit generation. Going down the data science route is one of the novel ways to overcome such challenges. By involving AI in telecom operations, CSPs can manage their data wisely and channelize their resources towards maximizing revenues.
Despite the positives associated with AI, only a limited percentage of telecom businesses have incorporated the technology for profit maximization. Gradually, one can expect that percentage to rise.
See the article here:
How Telecom Companies Can Leverage Machine Learning To Boost Their Profits - Forbes
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]