Generative deep learning for the development of a type 1 diabetes simulator | Communications Medicine – Nature.com
Kaizer, J. S., Heller, A. K. & Oberkampf, W. L. Scientific computer simulation review. Reliab. Eng. Syst. Saf. 138, 210218 (2015).
Article Google Scholar
Kadota, R. et al. A mathematical model of type 1 diabetes involving leptin effects on glucose metabolism. J. Theor. Biol. 456, 213223 (2018).
Article MathSciNet CAS PubMed ADS Google Scholar
Farmer Jr, T., Edgar, T. & Peppas, N. Pharmacokinetic modeling of the glucoregulatory system. J. Drug Deliv. Sci. Technol. 18, 387 (2008).
Article CAS PubMed Google Scholar
Nath, A., Biradar, S., Balan, A., Dey, R. & Padhi, R. Physiological models and control for type 1 diabetes mellitus: a brief review. IFAC-PapersOnLine 51, 289294 (2018).
Article Google Scholar
Mansell, E. J., Docherty, P. D. & Chase, J. G. Shedding light on grey noise in diabetes modelling. Biomed. Signal Process. Control 31, 1630 (2017).
Article Google Scholar
Mari, A., Tura, A., Grespan, E. & Bizzotto, R. Mathematical modeling for the physiological and clinical investigation of glucose homeostasis and diabetes. Front. Physiol. https://doi.org/10.3389/fphys.2020.575789 (2020).
Hovorka, R. et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25, 905 (2004).
Article PubMed Google Scholar
Man, C. D. et al. The UVA/PADOVA type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 8, 2634 (2014).
Article PubMed PubMed Central Google Scholar
Bergman, R. N. & Urquhart, J. The pilot gland approach to the study of insulin secretory dynamics. In Proceedings of the 1970 Laurentian Hormone Conference 583605 (Elsevier, 1971).
Franco, R. et al. Output-feedback sliding-mode controller for blood glucose regulation in critically ill patients affected by type 1 diabetes. IEEE Trans. Control Syst. Technol. 29, 27042711 (2021).
Article Google Scholar
Nielsen, M. A visual proof that neural nets can compute any function. http://neuralnetworksanddeeplearning.com/chap4.html (2016).
Zhou, D.-X. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 48, 787794 (2020).
Article MathSciNet Google Scholar
Nikzad, M., Movagharnejad, K., Talebnia, F. Comparative study between neural network model and mathematical models for prediction of glucose concentration during enzymatic hydrolysis. Int. J. Comput. Appl. 56, 1 (2012).
Nalisnick, E.T., Matsukawa, A., Teh, Y.W., Grr, D., Lakshminarayanan, B.: Do deep generative models know what they dont know? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, https://openreview.net/forum?id=H1xwNhCcYm (2019).
Noguer, J., Contreras, I., Mujahid, O., Beneyto, A. & Vehi, J. Generation of individualized synthetic data for augmentation of the type 1 diabetes data sets using deep learning models. Sensors. https://doi.org/10.3390/s22134944 (2022).
Thambawita, V. et al. Deepfake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine. Sci. Rep. 11, 18 (2021).
Article Google Scholar
Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 11, 112 (2020).
Article Google Scholar
Festag, S., Denzler, J. & Spreckelsen, C. Generative adversarial networks for biomedical time series forecasting and imputation. J. Biomed. Inform. 129, 104058 (2022).
Article PubMed Google Scholar
Xu, J., Li, H. & Zhou, S. An overview of deep generative models. IETE Tech. Rev. 32, 131139 (2015).
Article Google Scholar
Wan, C. & Jones, D. T. Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nat. Mach. Intell. 2, 540550 (2020).
Article Google Scholar
Choudhury, S., Moret, M., Salvy, P., Weilandt, D., Hatzimanikatis, V., & Miskovic, L. Reconstructing kinetic models for dynamical studies of metabolism using generative adversarial networks. Nat. Mach. Intell. 4, 710719 (2022).
Dieng, A.B., Kim, Y., Rush, A. M. & Blei, D. M. Avoiding latent variable collapse with generative skip models. In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research (eds Chaudhuri, K. & Sugiyama, M.) Vol. 89, 23972405 (PMLR, 2019).
Ruthotto, L. & Haber, E. An introduction to deep generative modeling. GAMM-Mitteilungen 44, 202100008 (2021).
Article MathSciNet Google Scholar
Xie, T. et al. Progressive attention integration-based multi-scale efficient network for medical imaging analysis with application to COVID-19 diagnosis. Comput. Biol. Med. 159, 106947 (2023).
Article CAS PubMed PubMed Central Google Scholar
Li, H., Zeng, N., Wu, P. & Clawson, K. Cov-net: A computer-aided diagnosis method for recognizing COVID-19 from chest x-ray images via machine vision. Expert Syst. Appl. 207, 118029 (2022).
Article PubMed PubMed Central Google Scholar
Li, K., Liu, C., Zhu, T., Herrero, P. & Georgiou, P. Glunet: a deep learning framework for accurate glucose forecasting. IEEE J. Biomed. health Inform. 24, 414423 (2019).
Article PubMed Google Scholar
Rabby, M. F. et al. Stacked LSTM based deep recurrent neural network with Kalman smoothing for blood glucose prediction. BMC Med. Inform. Decis. Mak. 21, 115 (2021).
Article Google Scholar
Munoz-Organero, M. Deep physiological model for blood glucose prediction in T1DM patients. Sensors 20, 3896 (2020).
Article CAS PubMed PubMed Central ADS Google Scholar
Noaro, G., Zhu, T., Cappon, G., Facchinetti, A. & Georgiou, P. A personalized and adaptive insulin bolus calculator based on double deep q-learning to improve type 1 diabetes management. IEEE J. Biomed. Health Inform. 27, pp. 25362544 (2023).
Emerson, H., Guy, M. & McConville, R. Offline reinforcement learning for safer blood glucose control in people with type 1 diabetes. J. Biomed. Inform. 142, 104376 (2023).
Article PubMed Google Scholar
Lemercier, J.-M., Richter, J., Welker, S. & Gerkmann, T. Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 15 (2023).
Richter, J., Welker, S., Lemercier, J.-M., Lay, B. & Gerkmann, T. Speech enhancement and dereverberation with diffusion-based generative models. In IEEE/ACM Transactions on Audio, Speech, and Language Processing 113 (2023).
Yoo, T. K. et al. Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks. Comput. Methods Prog. Biomed. 197, 105761 (2020).
Article Google Scholar
You, A., Kim, J. K., Ryu, I. H. & Yoo, T. K. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. Eye Vis. 9, 119 (2022).
Article Google Scholar
Liu, M. et al. Aa-wgan: attention augmented Wasserstein generative adversarial network with application to fundus retinal vessel segmentation. Comput. Biol. Med. 158, 106874 (2023).
Article PubMed Google Scholar
Wang, S. et al. Diabetic retinopathy diagnosis using multichannel generative adversarial network with semisupervision. IEEE Trans. Autom. Sci. Eng. 18, 574585 (2021).
Article Google Scholar
Zhou, Y., Wang, B., He, X., Cui, S. & Shao, L. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE J. Biomed. Health Inform. 26, 5666 (2020).
Article CAS Google Scholar
Liu, S. et al. Prediction of OCT images of short-term response to anti-VEGF treatment for diabetic macular edema using different generative adversarial networks. Photodiagnosis Photodyn. Ther. 41, 103272 (2023).
Sun, L.-C. et al. Generative adversarial network-based deep learning approach in classification of retinal conditions with optical coherence tomography images. Graefes Arch. Clin. Exp. Ophthalmol. 261, 13991412 (2023).
Article Google Scholar
Zhang, J., Zhu, E., Guo, X., Chen, H. & Yin, J. Chronic wounds image generator based on deep convolutional generative adversarial networks. In Theoretical Computer Science: 36th National Conference, NCTCS 2018, Shanghai, China, October 1314, 2018, Proceedings 36, 150158 (Springer, 2018).
Cichosz, S. L. & Xylander, A. A. P. A conditional generative adversarial network for synthesis of continuous glucose monitoring signals. J. Diabetes Sci. Technol. 16, 12201223 (2022).
Article PubMed Google Scholar
Mujahid, O. et al. Conditional synthesis of blood glucose profiles for T1D patients using deep generative models. Mathematics. https://doi.org/10.3390/math10203741 (2022).
Eunice, H. W. & Hargreaves, C. A. Simulation of synthetic diabetes tabular data using generative adversarial networks. Clin. Med. J. 7, 4959 (2021).
Che, Z., Cheng, Y., Zhai, S., Sun, Z. & Liu, Y. Boosting deep learning risk prediction with generative adversarial networks for electronic health records. In 2017 IEEE International Conference on Data Mining (ICDM) 787792 (2017).
Noguer, J., Contreras, I., Mujahid, O., Beneyto, A. & Vehi, J. Generation of individualized synthetic data for augmentation of the type 1 diabetes data sets using deep learning models. Sensors 22, 4944 (2022).
Article CAS PubMed PubMed Central ADS Google Scholar
Lim, G., Thombre, P., Lee, M. L. & Hsu, W. Generative data augmentation for diabetic retinopathy classification. In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI) 10961103 (2020).
Zhu, T., Yao, X., Li, K., Herrero, P. & Georgiou, P. Blood glucose prediction for type 1 diabetes using generative adversarial networks. In CEUR Workshop Proceedings, Vol. 2675, 9094 (2020).
Zeng, A., Chen, M., Zhang, L., & Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the AAAI conference on artificial intelligence.37, pp. 1112111128 (2023).
Zhu, T., Li, K., Herrero, P. & Georgiou, P. Glugan: generating personalized glucose time series using generative adversarial networks. IEEE J. Biomed. Health Inf. https://doi.org/10.1109/JBHI.2023.3271615 (2023).
Lanusse, F. et al. Deep generative models for galaxy image simulations. Mon. Not. R. Astron. Soc. 504, 55435555 (2021).
Article ADS Google Scholar
Ghosh, A. & ATLAS collaboration. Deep generative models for fast shower simulation in ATLAS. In Journal of Physics: Conference Series. IOP Publishing. 1525, p. 012077 (2020).
Borsoi, R. A., Imbiriba, T. & Bermudez, J. C. M. Deep generative endmember modeling: an application to unsupervised spectral unmixing. IEEE Trans. Comput. Imaging 6, 374384 (2019).
Article MathSciNet Google Scholar
Ma, H., Bhowmik, D., Lee, H., Turilli, M., Young, M., Jha, S., & Ramanathan, A.. Deep generative model driven protein folding simulations. In I. Foster, G. R. Joubert, L. Kucera, W. E. Nagel, & F. Peters (Eds.), Parallel Computing: Technology Trends (pp. 4555). (Advances in Parallel Computing; Vol. 36). IOS Press BV. https://doi.org/10.3233/APC200023 (2020)
Wen, J., Ma, H. & Luo, X. Deep generative smoke simulator: connecting simulated and real data. Vis. Comput. 36, 13851399 (2020).
Article Google Scholar
Mincu, D. & Roy, S. Developing robust benchmarks for driving forward AI innovation in healthcare. Nat. Mach. Intell. 4, 916921 (2022).
Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 11251134 (2017).
Ahmad, S. et al. Generation of virtual patient populations that represent real type 1 diabetes cohorts. Mathematics 9, 1200 (2021).
Bertachi, A. et al. Prediction of nocturnal hypoglycemia in adults with type 1 diabetes under multiple daily injections using continuous glucose monitoring and physical activity monitor. Sensors https://doi.org/10.3390/s20061705 (2020).
Marling, C. & Bunescu, R. The OhioT1DM dataset for blood glucose level prediction: update 2020. In CEUR Workshop Proceedings, Vol. 2675, 71 (NIH Public Access, 2020).
Estremera, E., Cabrera, A., Beneyto, A. & Vehi, J. A simulator with realistic and challenging scenarios for virtual T1D patients undergoing CSII and MDI therapy. J. Biomed. Inform. 132, 104141 (2022).
Article PubMed Google Scholar
Marin, I., Gotovac, S., Russo, M. & Boi-tuli, D. The effect of latent space dimension on the quality of synthesized human face images. J. Commun. Softw. Syst. 17, 124133 (2021).
Article Google Scholar
The Editorial Board. Into the latent space. Nat. Mach. Intell. 2, 151 (2020).
Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(22)00319-9 (2022).
Beneyto, A., Bertachi, A., Bondia, J. & Vehi, J. A new blood glucose control scheme for unannounced exercise in type 1 diabetic subjects. IEEE Trans. Control Syst. Technol. 28, 593600 (2020).
Article Google Scholar
See the original post here:
Generative deep learning for the development of a type 1 diabetes simulator | Communications Medicine - Nature.com
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]