Founded by Ex-Uber Data Architect and Apache Hudi Creator, Onehouse Supercharges Data Lakes for AI and Machine Learning With $8 Million in Seed…
Onehouse Combines the Ease-of-Use of a Data Warehouse With the Scale of a Data Lake Into a Fully-Managed Service on Top of the Popular Apache Hudi Open Source Project
MENLO PARK, Calif., Feb. 02, 2022 (GLOBE NEWSWIRE) -- Today Onehouse, the first managed lakehouse company, emerged from stealth with its cloud-native managed service based on Apache Hudi that makes data lakes easier, faster and cheaper.
Data has become the driving force of innovation across nearly every industry in the world. Yet organizations still struggle to build and maintain data architectures that can economically scale at the fast-paced growth of their data. As the size of the data and the AI and machine learning (ML) workloads increase, their costs rise exponentially and they start to outgrow their data warehouses. To scale any further they turn to a data lake where they face a whole new set of complex challenges like constantly tuning data layouts, large-scale concurrency controls, fast data ingestion, data deletions and more.
Onehouse founder Vinoth Chandar faced these very challenges as he was building one of the largest data lakes in the world at Uber. A rapidly growing Uber needed the performance of a warehouse and the scale of a data lake, in near real-time to power AI/ML driven features like predicting ETAs, recommending eats and ensuring ride safety. He created Apache Hudi to implement a new path-breaking architecture where the core warehouse and database functionality was directly added to the data lake, today known as the lakehouse. Apache Hudi brings a state-of-the-art data lakehouse to life with advanced indexes, streaming ingestion services and data clustering/optimization techniques.
Apache Hudi is now widely adopted across the industry used from startups to large enterprises including Amazon, Walmart, Disney+ Hotstar, GE Aviation, Robinhood and TikTok to build exabyte scale data lakes in near-real-time at vastly improved price/performance. The broad adoption of Hudi has battle-tested and proven the foundational benefits of this open source project. Thousands of organizations from across the world have contributed to Hudi and the project has grown 7x in less than two years to nearly one million monthly downloads. At Uber, Hudi continues to ingest more than 500 billion records every day.
Story continues
Zheng Shao and Mohammad Islam from Uber shared we started the Hudi project in 2016, and submitted it to Apache Incubator Project in 2019. Apache Hudi is now a Top-Level Project, with the majority of our Big Data on HDFS in Hudi format. This has dramatically reduced the computing capacity needs at Uber in the Cost-Efficient Open Source Big Data Platform at Uber blog: https://eng.uber.com/cost-efficient-big-data-platform/.
Even with transformative technology like Apache Hudi, building a high quality data lake requires months of investment with scarce talent without which there are high risks that data is not fresh enough or the lake is unreliable or performs poorly.
Onehouse founder and CEO Vinoth Chandar said: While a warehouse can just be used, a lakehouse still needs to be built. Having worked with many organizations on that journey for four years in the Apache Hudi community, we believe Onehouse will enable easy adoption of data lakes and future-proof the data architecture for machine learning/data science down the line.
Onehouse streamlines the adoption of the lakehouse architecture, by offering a fully-managed cloud-native service that quickly ingests, self-manages and auto-optimizes data. Instead of creating yet another vertically integrated data and query stack, it provides one interoperable and truly open data layer that accelerates workloads across all popular data lake query engines like Apache Spark, Trino, Presto and even cloud warehouses as external tables.
Leveraging unique capabilities of Apache Hudi, Onehouse opens the door for incremental data processing that is typically orders of magnitude faster than old-school batch processing. By combining a breakthrough technology and a fully-managed easy-to-use service, organizations can build data lakes in minutes, not months, realize large cost savings and still own their data in open formats, not locked into any individual vendors.
Industry Analysts on Onehouse
The complexity of building a data lake today is prohibitive for many organizations who want to quickly unlock analytics and AI from their data, said Paul Nashawaty, Senior Analyst at Enterprise Strategy Group. The team at Onehouse is building a fully-managed lakehouse infrastructure that automates away tedious data engineering chores and complex performance tuning. Built on an industry proven open source project, Apache Hudi, Onehouse ensures your data foundation is open and future proof.
Data is the new oil and the driving force behind data economy and innovation. But it is very hard, and expensive to build real-time data lakes that can serve AI/ML model creation and model serving in real-time, said Andy Thurai, Vice President and Principal Analyst at Constellation Research. A good data lakehouse solution should consider using a hybrid model as well as look into using a combination of commercial and open-source options (such as Apache Hudi) to strike a balance between cost vs ease of use.
To unlock the power of machine learning, enterprises should invest in an open standards data lake that makes all enterprise data available for relevant models, said Hyoun Park, Chief Analyst at Amalgam Insights. Onehouse tackles this challenge head-on by providing a fully-managed lakehouse that will greatly accelerate the ability to translate massive and varied data sources into AI-guided insight.
$8 Million in Seed Funding Onehouse raised $8 million in seed funding co-led by Greylock and Addition. Onehouse plans to use the money for its managed lakehouse product and to further the research and development on Apache Hudi.
Greylock Partner Jerry Chen said: The data lake house is the future of data lakes, providing customers the ease of use of a data warehouse with the cost and scale advantages of a data lake. Apache Hudi is already the de facto starting point for modern data lakes and today Onehouse makes data lakes easily accessible and usable by all customers.
Addition Investor Aaron Schildkrout said: Onehouse is ushering in the next generation of data infrastructure, replacing expensive data ingestion and data warehousing solutions with a single lakehouse thats dramatically less costly, faster, more open and - now - also easier to use. Onehouse is going to make broadly accessible what has to-date been a tightly held secret used by only the most advanced data teams.
Additional Resources
About OnehouseOnehouse provides a cloud-native managed lakehouse service that makes data lakes easier, faster and cheaper. Onehouse blends the ease of use of a warehouse with the scale of a data lake into a fully managed product. Engineers can build data lakes in minutes, process data in seconds and own data in open source formats, not locked away to individual vendors. Onehouse is founded by a former Uber data architect and the creator of Apache Hudi who pioneered the fundamental technology of the lakehouse. For more information, please visit https://onehouse.ai or follow @Onehousehq.
Media and Analyst Contact:Amber Rowlandamber@therowlandagency.com+1-650-814-4560
A photo accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/aedd9404-e43b-49fb-9091-a4b0e57e7f39
Here is the original post:
Founded by Ex-Uber Data Architect and Apache Hudi Creator, Onehouse Supercharges Data Lakes for AI and Machine Learning With $8 Million in Seed...
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]