Federated machine learning is coming – here’s the questions we should be asking – Diginomica
A few years ago, I wondered how edge data would ever be useful given the enormous cost of transmitting all the data to either the centralized data center or some variant of cloud infrastructure. (It is said that 5G will solve that problem).
Consider, for example, applications of vast sensor networks that stream a great deal of data at small intervals. Vehicles on the move are a good example.
There is telemetry from cameras, radar, sonar, GPS and LIDAR, the latter about 70MB/sec. This could quickly amount to four terabytes per day (per vehicle). How much of this data needs to be retained? Answers I heard a few years ago were along two lines:
My counterarguments at the time were:
Introducing TensorFlow federated, via The TensorFlow Blog:
This centralized approach can be problematic if the data is sensitive or expensive to centralize. Wouldn't it be better if we could run the data analysis and machine learning right on the devices where that data is generated, and still be able to aggregate together what's been learned?
Since I looked at this a few years ago, the distinction between an edge device and a sensor has more or less disappeared. Sensors can transmit via wifi (though there is an issue of battery life, and if they're remote, that's a problem); the definition of the edge has widened quite a bit.
Decentralized data collection and processing have become more powerful and able to do an impressive amount of computing. The case is point in Intel's Introducing the Intel Neural Compute Stick 2 computer vision and deep learning accelerator powered by the Intel Movidius Myriad X VPU, that can stick into a Pi for less than $70.00.
But for truly distributed processing, the Apple A13 chipset in the iPhone 11 has a few features that boggle the mind: From Inside Apple's A13 Bionic system-on-chip Neural Engine, a custom block of silicon separate from the CPU and GPU, focused on accelerating Machine Learning computations. The CPU has a set of "machine learning accelerators" that perform matrix multiplication operations up to six times faster than the CPU alone. It's not clear how exactly this hardware is accessed, but for tasks like machine learning (ML) that use lots of matrix operations, the CPU is a powerhouse. Note that this matrix multiplication hardware is part of the CPU cores and separate from the Neural Engine hardware.
This should beg the question, "Why would a smartphone have neural net and machine learning capabilities, and does that have anything to do with the data transmission problem for the edge?" A few years ago, I thought the idea wasn't feasible, but the capability of distributed devices has accelerated. How far-fetched is this?
Let's roll the clock back thirty years. The finance department of a large diversified organization would prepare in the fall a package of spreadsheets for every part of the organization that had budget authority. The sheets would start with low-level detail, official assumptions, etc. until they all rolled up to a small number of summary sheets that were submitted headquarters. This was a terrible, cumbersome way of doing things, but it does, in a way, presage the concept of federated learning.
Another idea that vanished is Push Technology that shared the same network load as centralizing sensor data, just in the opposite direction. About twenty-five years, when everyone had a networked PC on their desk, the PointCast Network used push technology. Still, it did not perform as well as expected, often believed to be because its traffic burdened corporate networks with excessive bandwidth use, and was banned in many places. If Federated Learning works, those problems have to be addressed
Though this estimate changes every day, there are 3 billion smartphones in the world and 7 billion connected devices.You can almost hear the buzz in the air of all of that data that is always flying around. The canonical image of ML is that all of that data needs to find a home somewhere so that algorithms can crunch through it to yield insights. There are a few problems with this, especially if the data is coming from personal devices, such as smartphones, Fitbit's, even smart homes.
Moving highly personal data across the network raises privacy issues. It is also costly to centralize this data at scale. Storage in the cloud is asymptotically approaching zero in cost, but the transmission costs are not. That includes both local WiFi from the devices (or even cellular) and the long-distance transmission from the local collectors to the central repository. This s all very expensive at this scale.
Suppose, large-scale AI training could be done on each device, bringing the algorithm to the data, rather than vice-versa? It would be possible for each device to contribute to a broader application while not having to send their data over the network. This idea has become respectable enough that it has a name - Federated Learning.
Jumping ahead, there is no controversy that training a network without compromising device performance and user experience, or compressing a model and resorting to a lower accuracy are not alternatives. In Federated Learning: The Future of Distributed Machine Learning:
To train a machine learning model, traditional machine learning adopts a centralized approach that requires the training data to be aggregated on a single machine or in a datacenter. This is practically what giant AI companies such as Google, Facebook, and Amazon have been doing over the years. This centralized training approach, however, is privacy-intrusive, especially for mobile phone usersTo train or obtain a better machine learning model under such a centralized training approach, mobile phone users have to trade their privacy by sending their personal data stored inside phones to the clouds owned by the AI companies.
The federated learning approach decentralizes training across mobile phones dispersed across geography. The presumption is that they collaboratively develop machine learning while keeping their personal data on their phones. For example, building a general-purpose recommendation engine for music listeners. While the personal data and personal information are retained on the phone, I am not at all comfortable that data contained in the result sent to the collector cannot be reverse-engineered - and I havent heard a convincing argument to the contrary.
Here is how it works. A computing group, for example, is a collection of mobile devices that have opted to be part of a large scale AI program. The device is "pushed" a model and executes it locally and learns as the model processes the data. There are some alternatives to this. Homogeneous models imply that every device is working with the same schema of data. Alternatively, there are heterogeneous models where harmonization of the data happens in the cloud.
Here are some questions in my mind.
Here is the fuzzy part: federated learning sends the results of the learning as well as some operational detail such as model parameters and corresponding weights back to the cloud. How does it do that and preserve your privacy and not clog up your network? The answer is that the results are a fraction of the data, and since the data itself is not more than a few Gb, that seems plausible. The results sent to the cloud can be encrypted with, for example, homomorphic encryption (HE). An alternative is to send the data as a tensor, which is not encrypted because it is not understandable by anything but the algorithm. The update is then aggregated with other user updates to improve the shared model. Most importantly, all the training data remains on the user's devices.
In CDO Review, The Future of AI. May Be In Federated Learning:
Federated Learning allows for faster deployment and testing of smarter models, lower latency, and less power consumption, all while ensuring privacy. Also, in addition to providing an update to the shared model, the improved (local) model on your phone can be used immediately, powering experiences personalized by the way you use your phone.
There is a lot more to say about this. The privacy claims are a little hard to believe. When an algorithm is pushed to your phone, it is easy to imagine how this can backfire. Even the tensor representation can create a problem. Indirect reference to real data may be secure, but patterns across an extensive collection can surely emerge.
Read the original:
Federated machine learning is coming - here's the questions we should be asking - Diginomica
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]