Dense reinforcement learning for safety validation of autonomous vehicles – Nature.com
Kalra, N. & Paddock, S. M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. A 94, 182193 (2016).
Google Scholar
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436444 (2015).
Article ADS CAS PubMed Google Scholar
10 million self-driving cars will be on the road by 2020. Insider https://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-the-road-by-2020-2015-5-6 (2016).
Nissan promises self-driving cars by 2020. Wired https://www.wired.com/2013/08/nissan-autonomous-drive/ (2014).
Teslas self-driving vehicles are not far off. Insider https://www.businessinsider.com/elon-musk-on-teslas-autonomous-cars-2015-9 (2015).
Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (Society of Automotive Engineers, 2021); https://www.sae.org/standards/content/j3016_202104/.
2021 Disengagement Reports (California Department of Motor Vehicles, 2022); https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/.
Paz, D., Lai, P. J., Chan, N., Jiang, Y. & Christensen, H. I. Autonomous vehicle benchmarking using unbiased metrics. In IEEE International Conference on Intelligent Robots and Systems 62236228 (IEEE, 2020).
Favar, F., Eurich, S. & Nader, N. Autonomous vehicles disengagements: trends, triggers, and regulatory limitations. Accid. Anal. Prev. 110, 136148 (2018).
Article PubMed Google Scholar
Riedmaier, S., Ponn, T., Ludwig, D., Schick, B. & Diermeyer, F. Survey on scenario-based safety assessment of automated vehicles. IEEE Access 8, 8745687477 (2020).
Article Google Scholar
Nalic, D. et al. Scenario based testing of automated driving systems: a literature survey. In Proc. of the FISITA Web Congress 110 (Fisita, 2020).
Feng, S., Feng, Y., Yu, C., Zhang, Y. & Liu, H. X. Testing scenario library generation for connected and automated vehicles, part I: methodology. IEEE Trans. Intell. Transp. Syst. 22, 15731582 (2020).
Article Google Scholar
Feng, S. et al. Testing scenario library generation for connected and automated vehicles, part II: case studies. IEEE Trans. Intell. Transp. Syst. 22, 56355647 (2020).
Article Google Scholar
Feng, S., Yan, X., Sun, H., Feng, Y. & Liu, H. X. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment. Nat. Commun. 12, 748 (2021).
Article ADS CAS PubMed PubMed Central Google Scholar
Sinha, A., OKelly, M., Tedrake, R. & Duchi, J. C. Neural bridge sampling for evaluating safety-critical autonomous systems. Adv. Neural Inf. Process. Syst. 33, 64026416 (2020).
Google Scholar
Li, L. et al. Parallel testing of vehicle intelligence via virtual-real interaction. Sci. Robot. 4, eaaw4106 (2019).
Article PubMed Google Scholar
Zhao, D. et al. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques. IEEE Trans. Intell. Transp. Syst. 18, 595607 (2016).
Article PubMed PubMed Central Google Scholar
Donoho, D. L. High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Challenges Lecture 1, 32 (2000).
Google Scholar
Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504507 (2006).
Article ADS MathSciNet CAS PubMed MATH Google Scholar
Silver, D. et al. Mastering the game of go without human knowledge. Nature 550, 354359 (2017).
Article ADS CAS PubMed Google Scholar
Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature 594, 207212 (2021).
Article ADS CAS PubMed Google Scholar
Cummings, M. L. Rethinking the maturity of artificial intelligence in safety-critical settings. AI Mag. 42, 615 (2021).
Google Scholar
Kato, S. et al. Autoware on board: enabling autonomous vehicles with embedded systems. In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems 287296 (IEEE, 2018).
Feng, S. et al. Safety assessment of highly automated driving systems in test tracks: a new framework. Accid. Anal. Prev. 144, 105664 (2020).
Article PubMed Google Scholar
Lopez, P. et al. Microscopic traffic simulation using SUMO. In International Conference on Intelligent Transportation Systems 25752582 (IEEE, 2018).
Arun, A., Haque, M. M., Bhaskar, A., Washington, S. & Sayed, T. A systematic mapping review of surrogate safety assessment using traffic conflict techniques. Accid. Anal. Prev. 153, 106016 (2021).
Article PubMed Google Scholar
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).
Koren, M., Alsaif, S., Lee, R. & Kochenderfer, M. J. Adaptive stress testing for autonomous vehicles. In IEEE Intelligent Vehicles Symposium (IV) 17 (IEEE, 2018).
Sun, H., Feng, S., Yan, X. & Liu, H. X. Corner case generation and analysis for safety assessment of autonomous vehicles. Transport. Res. Rec. 2675, 587600 (2021).
Article Google Scholar
Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).
Owen, A. B. Monte Carlo theory, methods and examples. Art Owen https://artowen.su.domains/mc/ (2013).
Krajewski, R., Moers, T., Bock, J., Vater, L. & Eckstein, L. September. The round dataset: a drone dataset of road user trajectories at roundabouts in Germany. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems 16 (IEEE, 2020).
Nowakowski, C., Shladover, S. E., Chan, C. Y. & Tan, H. S. Development of California regulations to govern testing and operation of automated driving systems. Transport. Res. Rec. 2489, 137144 (2015).
Article Google Scholar
Sauerbier, J., Bock, J., Weber, H. & Eckstein, L. Definition of scenarios for safety validation of automated driving functions. ATZ Worldwide 121, 4245 (2019).
Article Google Scholar
Pek, C., Manzinger, S., Koschi, M. & Althoff, M. Using online verification to prevent autonomous vehicles from causing accidents. Nat. Mach. Intell. 2, 518528 (2020).
Article Google Scholar
Seshia, S. A., Sadigh, D. & Sastry, S. S. Toward verified artificial intelligence. Commun. ACM 65, 4655 (2022).
Article Google Scholar
Wing, J. M. A specifiers introduction to formal methods. IEEE Comput. 23, 824 (1990).
Article Google Scholar
Li, A., Sun, L., Zhan, W., Tomizuka, M. & Chen, M. Prediction-based reachability for collision avoidance in autonomous driving. In 2021 IEEE International Conference on Robotics and Automation 79087914 (IEEE, 2021).
Automated Vehicle Safety Consortium AVSC Best Practice for Metrics and Methods for Assessing Safety Performance of Automated Driving Systems (ADS) (SAE Industry Technologies Consortia, 2021).
Au, S. K. & Beck, J. L. Important sampling in high dimensions. Struct. Saf. 25, 139163 (2003).
Article Google Scholar
Silver, D., Singh, S., Precup, D. & Sutton, R. S. Reward is enough. Artif. Intell. 299, 113 (2021).
Article MathSciNet MATH Google Scholar
Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529533 (2015).
Article ADS CAS PubMed Google Scholar
Weng, B., Rao, S. J., Deosthale, E., Schnelle, S. & Barickman, F. Model predictive instantaneous safety metric for evaluation of automated driving systems. In IEEE Intelligent Vehicles Symposium (IV) 18991906 (IEEE, 2020).
Junietz, P., Bonakdar, F., Klamann, B. & Winner, H. Criticality metric for the safety validation of automated driving using model predictive trajectory optimization. In International Conference on Intelligent Transportation Systems 6065 (IEEE, 2018).
Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition 47004708 (IEEE, 2017).
Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning. In International Conference on Machine Learning 4148 (ICML, 2009).
Yan, X., Feng, S., Sun, H., & Liu, H. X. Distributionally consistent simulation of naturalistic driving environment for autonomous vehicle testing. Preprint at https://arxiv.org/abs/2101.02828 (2021).
Bezzina, D. & Sayer, J. Safety Pilot Model Deployment: Test Conductor Team Report DOT HS 812 171 (National Highway Traffic Safety Administration, 2014).
Sayer, J. et al. Integrated Vehicle-based Safety Systems Field Operational Test: Final Program Report FHWA-JPO-11-150; UMTRI-2010-36 (Joint Program Office for Intelligent Transportation Systems, 2011).
Treiber, M., Hennecke, A. & Helbing, D. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805 (2000).
Article ADS CAS MATH Google Scholar
Kesting, A., Treiber, M. & Helbing, D. General lane-changing model MOBIL for car-following models. Transp. Res. Rec. 1999, 8694 (2007).
Article Google Scholar
Liang, E. et al. RLlib: abstractions for distributed reinforcement learning. In International Conference on Machine Learning 30533062 (ICML, 2018).
Chang A. X. et al. ShapeNet: an information-rich 3D model repository. Preprint at https://arxiv.org/abs/1512.03012 (2015).
Darweesh, H. et al. Open source integrated planner for autonomous navigation in highly dynamic environments. J. Robot. Mechatron. 29, 668684 (2017).
Article Google Scholar
View original post here:
Dense reinforcement learning for safety validation of autonomous vehicles - Nature.com
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]