Deep Learning at the Edge Simplifies Package Inspection – Vision Systems Design
By Brian Benoit, Senior Manager Product Marketing, In-Sight Products, Cognex
Machine vision helps the packaging industry improve process control, improve product quality, and comply with packaging regulations. By removing human error and subjectivity with tightly controlled processes based on well-defined, quantifiable parameters, machine vision automates a variety of package inspection tasks. Machine vision tasks in the packaging industry include label inspection, optical character reading and verification (OCR/OCV), presence-absence inspection, counting, safety seal inspection, measurement, barcode reading, identification, and robotic guidance.
Machine vision systems deliver consistent performance when dealing with well-defined packaging defects. Parameterized, analytical, rule-based algorithms analyze package or product features captured within images that can be mathematically defined as either good or bad. However, analytical machine vision tools get pushed to their limits when potential defects are difficult to numerically define and the appearance of a defect significantly varies from one package to the next, making some applications difficult or even impossible to solve with more traditional tools.
In contrast, deep learning software relies on example-based training and neural networks to analyze defects, find and classify objects, and read printed characters. Instead of relying on engineers, systems integrators, and machine vision experts to tune a unique set of parameterized analytical tools until application requirements are satisfied, deep learning relies on operators, line managers, and other subject-matter experts to label images. By showing the deep learning system what a good part looks like and what a bad part looks like, deep learning software can make a distinction between good and defective parts, as well as classify the type of defects present.
Not so long ago, perhaps a decade, deep learning was available only to researchers, data scientists, and others with big budgets and highly specialized skills. However, over the last few years many machine vision system and solution providers have introduced powerful deep learning software tools tailored for machine vision applications.
In addition to VisionPro Deep Learning software from Cognex (Natick, MA, USA; http://www.cognex.com), Adaptive Vision (Gliwice, Poland; http://www.adaptive-vision.com) offers a deep learning add-on for its Aurora Vision Studio; Cyth Systems (San Diego, CA, USA; http://www.cyth.com) offers Neural Vision; Deevio (Berlin, Germany; http://www.deevio.ai) has a neural net supervised learning mode; MVTec Software (Munich, Germany; http://www.mvtec.com) offers MERLIC; and numerous other companies offer open-source toolkits to develop software specifically targeted at machine vision applications.
However, one common barrier to deploying deep learning in factory automation environments is the level of difficulty involved. Deep learning projects typically consist of four project phases: planning, data collection and ground truth labeling, optimization, and factory acceptance testing (FAT). Deep learning also frequently requires many hundreds of images and powerful hardware in the form of a PC with a GPU used to train a model for any given application. But, deep learning is now easier to use with the introduction of innovative technologies that process images at the edge.
Deep learning at the edge (edge learning), a subset of deep learning, uses a set of pretrained algorithms that process images directly on-device. Compared with more traditional deep learning-based solutions, edge learning requires less time and fewer images, and involves simpler setup and training.
Edge learning requires no automation or machine vision expertise for deployment and consequently offers a viable automation solution for everyonefrom machine vision beginners to experts. Instead of relying on engineers, systems integrators, and machine vision experts, edge learning uses the existing knowledge of operators, line engineers, and others to label images for system training.
Consequently, edge learning helps line operators looking for a straightforward way to integrate automation into their lines as well as expert automation engineers and systems integrators who use parameterized, analytical, rule-based machine vision tools but lack specific deep learning expertise. By embedding efficient, rules-based machine vision within a set of pretrained deep learning algorithms, edge learning devices provide the best of both worlds, with an integrated tool set optimized for packaging and factory automation applications.
With a single smart camera-based solution, edge learning can be deployed on any line within minutes. This solution integrates high-quality vision hardware, machine vision tools that preprocess images to reduce computational load, deep learning networks pretrained to solve factory automation problems, and a straightforward user interface designed for industrial applications.
Edge learning differs from existing deep learning frameworks in that it is not general purpose but is specifically tailored for industrial automation. And, it differs from other methods in its focus on ease of use across all stages of application deployment. For instance, edge learning requires fewer images to achieve proof of concept, less time for image setup and acquisition, no external GPU, and no specialized programming.
Developing a standard classification application using traditional deep learning methodology may require hundreds of images and several weeks. Edge learning makes defect classification much simpler. By analyzing multiple regions of interest (ROIs) in its field of view (FOV) and classifying each of those regions into multiple categories, edge learning lets anyone quickly and easily set up sophisticated assembly verification applications.
In the food packaging industry, edge learning technology is increasingly being used for verification and sorting of frozen meal tray sections. In many frozen meal packing applications, robots pick and place various food items into trays passing by on a high-speed line. For example, robots may place protein in the bottom center section, vegetables in the top left section, a side dish or dessert item in the top middle section, and some type of starch in the top right section of each tray.
Each section of a tray may contain multiple SKUs. For example, the protein section may include either meat loaf, turkey, or chicken. The starch section may contain pasta, rice, or potatoes. Edge learning makes it possible for operators to click and drag bounding boxes around characteristic features on a meal tray, fixing defined tray sections for training.
Next, the operator reviews a handful of images, classifying each possible class. Frequently, this can be done in a few minutes, with as few as three to five images for each class. During high-speed operation, the edge learning system can accurately classify the different sections. To accommodate entirely new classes or new varieties of existing classes during production, the tool can be updated with a few images in each new category.
For complex or highly customized applications, traditional deep learning is an ideal solution because it provides the capacity to process large and highly detailed image sets. Often, such applications involve objects with significant variations, which demands robust training capabilities and advanced computational power. Image sets with hundreds or thousands of images must be used for training to account for such significant variation and to capture all potential outcomes.
Enabling users to analyze such image sets quickly and efficiently, traditional deep learning delivers an effective solution for automating sophisticated tasks. Full-fledged deep learning products and open-source frameworks are well-designed to address complex applications. However, many factory automation applications entail far less complexity, making edge learning a more suitable solution.
With algorithms designed specifically for factory automation requirements and use cases, edge learning eliminates the need for an external GPU and hundreds or thousands of training images. Such pretraining, supported by appropriate traditional parameterized analytical machine vision tools, can vastly improve many machine vision tasks. The result is edge learning, which combines the power of deep learning with a light and fast set of vision tools that line engineers can apply daily to packaging problems and other factory automation challenges.
Compared with deep learning solutions that can require hours to days of training and hundreds to thousands of images, edge learning tools are typically trained in minutes using a few images per class. Edge learning streamlines deployment to allow fast ramp-up for manufacturers and the ability to adjust quickly and easily to changes.
This ability to find variable patterns in complex systems makes deep learning machine vision an exciting solution for inspecting objects with inconsistent shapes and defects, such as flexible packaging in first aid kits.
For the purposes of edge learning, Cognex has combined traditional analytical machine vision tools in ways specific to the demands of each application, eliminating the need to chain vision tools or devise complex logic sequences. Such tools offer fast preprocessing of images and the ability to extract density, edge, and other feature information that is useful for detecting and analyzing manufacturing defects. By finding and clarifying the relevant parts of an image, these tools reduce the computational load of deep learning.
For example, packing a lot of sophisticated hardware into a small form factor, Cognexs In-Sight 2800 vision system runs edge learning entirely on the camera. The embedded smart camera platform includes an integrated autofocus lens, lighting, and an image sensor. The heart of the device is a 1.6-MPixel sensor.
An autofocus lens keeps the object of interest in focus, even as the FOV or distance from the camera changes. Smaller and lighter than equivalent mechanical lenses, liquid autofocus lenses also offer improved resistance to shock and vibration.
Key for a high-quality image, the smart camera is available with integrated lighting in the form of a multicolor torchlight that offers red, green, blue, white, and infrared options. To maximize contrast, minimize dark areas, and bring out necessary detail, the torchlight comes with field-interchangeable optical accessories such as lenses, color filters, and diffusers, increasing system flexibility for handling numerous applications.
With 24 V of power, the In-Sight 2800 vision system has an IP67-rated housing, and Gigabit Ethernet connectivity delivers fast communication speed and image offloading. This edge learning-based platform also includes traditional analytical machine vision tools that can be parameterized for a variety of specialized tasks, such as location, measurement, and orientation.
Training edge learning is like training a new employee on the line. Edge learning users dont need to understand machine vision systems or deep learning. Rather, they only need to understand the classification problem that needs to be solved. If it is straightforwardfor instance, classifying acceptable and unacceptable parts as OK/NGthe user must only understand which items are acceptable and which are not.
Sometimes line operators can include process knowledge not readily apparent, derived from testing down the line, which can reveal defects that are hard for even humans to detect. Edge learning is particularly effective at figuring out which variations in a part are significant and which variations are purely cosmetic and do not affect functionality.
Edge learning is not limited to binary classification into OK/NG; it can classify objects into any number of categories. If parts need to be sorted into three or four distinct categories, depending on components or configurations, that can be set up just as easily.
To simplify factory automation and handle machine vision tasks of varying complexity, edge learning is useful in a wide range of industries, including medical, pharmaceutical, and beverage packaging applications.
Automated visual inspection is essential for supporting packaging quality and compliance while improving packaging line speed and accuracy. Fill level verification is an emerging use of edge learning technology. In the medical and pharmaceutical industries, vials filled with medication to a preset level must be inspected before they are capped and sealed to confirm that levels are within proper tolerances.
Unconfused by reflection, refraction, or other image variations, edge learning can be easily trained to verify fill levels. Fill levels that are too high or too low can be quickly classified as NG, while only those within the proper tolerances are classified as OK.
Another emerging use of edge learning technology is cap inspection in the beverage industry. Bottles are filled with soft drinks and juices and sealed with screw caps. If the rotary capper cross-threads a cap, applies improper torque, or causes other damage during the capping process, it can leave a gap that allows for contamination or leakage.
To train an edge learning system in capping, images showing well-sealed caps are labeled as good; images showing caps with slight gaps, which might be almost imperceptible to the human eye, are labeled as no good. After training is complete, only fully sealed caps are categorized as OK. All other caps are classified as NG.
While challenges for traditional rule-based machine vision continue to arise as packaging application complexity increases, easy-to-use edge learning on embedded smart camera platforms has proved to be a game-changing technology. Edge learning is more capable than traditional machine vision analytical tools and is extremely easy to use with previously challenging applications.
Read more from the original source:
Deep Learning at the Edge Simplifies Package Inspection - Vision Systems Design
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]