Deep Learning at the Edge Simplifies Package Inspection – Vision Systems Design
By Brian Benoit, Senior Manager Product Marketing, In-Sight Products, Cognex
Machine vision helps the packaging industry improve process control, improve product quality, and comply with packaging regulations. By removing human error and subjectivity with tightly controlled processes based on well-defined, quantifiable parameters, machine vision automates a variety of package inspection tasks. Machine vision tasks in the packaging industry include label inspection, optical character reading and verification (OCR/OCV), presence-absence inspection, counting, safety seal inspection, measurement, barcode reading, identification, and robotic guidance.
Machine vision systems deliver consistent performance when dealing with well-defined packaging defects. Parameterized, analytical, rule-based algorithms analyze package or product features captured within images that can be mathematically defined as either good or bad. However, analytical machine vision tools get pushed to their limits when potential defects are difficult to numerically define and the appearance of a defect significantly varies from one package to the next, making some applications difficult or even impossible to solve with more traditional tools.
In contrast, deep learning software relies on example-based training and neural networks to analyze defects, find and classify objects, and read printed characters. Instead of relying on engineers, systems integrators, and machine vision experts to tune a unique set of parameterized analytical tools until application requirements are satisfied, deep learning relies on operators, line managers, and other subject-matter experts to label images. By showing the deep learning system what a good part looks like and what a bad part looks like, deep learning software can make a distinction between good and defective parts, as well as classify the type of defects present.
Not so long ago, perhaps a decade, deep learning was available only to researchers, data scientists, and others with big budgets and highly specialized skills. However, over the last few years many machine vision system and solution providers have introduced powerful deep learning software tools tailored for machine vision applications.
In addition to VisionPro Deep Learning software from Cognex (Natick, MA, USA; http://www.cognex.com), Adaptive Vision (Gliwice, Poland; http://www.adaptive-vision.com) offers a deep learning add-on for its Aurora Vision Studio; Cyth Systems (San Diego, CA, USA; http://www.cyth.com) offers Neural Vision; Deevio (Berlin, Germany; http://www.deevio.ai) has a neural net supervised learning mode; MVTec Software (Munich, Germany; http://www.mvtec.com) offers MERLIC; and numerous other companies offer open-source toolkits to develop software specifically targeted at machine vision applications.
However, one common barrier to deploying deep learning in factory automation environments is the level of difficulty involved. Deep learning projects typically consist of four project phases: planning, data collection and ground truth labeling, optimization, and factory acceptance testing (FAT). Deep learning also frequently requires many hundreds of images and powerful hardware in the form of a PC with a GPU used to train a model for any given application. But, deep learning is now easier to use with the introduction of innovative technologies that process images at the edge.
Deep learning at the edge (edge learning), a subset of deep learning, uses a set of pretrained algorithms that process images directly on-device. Compared with more traditional deep learning-based solutions, edge learning requires less time and fewer images, and involves simpler setup and training.
Edge learning requires no automation or machine vision expertise for deployment and consequently offers a viable automation solution for everyonefrom machine vision beginners to experts. Instead of relying on engineers, systems integrators, and machine vision experts, edge learning uses the existing knowledge of operators, line engineers, and others to label images for system training.
Consequently, edge learning helps line operators looking for a straightforward way to integrate automation into their lines as well as expert automation engineers and systems integrators who use parameterized, analytical, rule-based machine vision tools but lack specific deep learning expertise. By embedding efficient, rules-based machine vision within a set of pretrained deep learning algorithms, edge learning devices provide the best of both worlds, with an integrated tool set optimized for packaging and factory automation applications.
With a single smart camera-based solution, edge learning can be deployed on any line within minutes. This solution integrates high-quality vision hardware, machine vision tools that preprocess images to reduce computational load, deep learning networks pretrained to solve factory automation problems, and a straightforward user interface designed for industrial applications.
Edge learning differs from existing deep learning frameworks in that it is not general purpose but is specifically tailored for industrial automation. And, it differs from other methods in its focus on ease of use across all stages of application deployment. For instance, edge learning requires fewer images to achieve proof of concept, less time for image setup and acquisition, no external GPU, and no specialized programming.
Developing a standard classification application using traditional deep learning methodology may require hundreds of images and several weeks. Edge learning makes defect classification much simpler. By analyzing multiple regions of interest (ROIs) in its field of view (FOV) and classifying each of those regions into multiple categories, edge learning lets anyone quickly and easily set up sophisticated assembly verification applications.
In the food packaging industry, edge learning technology is increasingly being used for verification and sorting of frozen meal tray sections. In many frozen meal packing applications, robots pick and place various food items into trays passing by on a high-speed line. For example, robots may place protein in the bottom center section, vegetables in the top left section, a side dish or dessert item in the top middle section, and some type of starch in the top right section of each tray.
Each section of a tray may contain multiple SKUs. For example, the protein section may include either meat loaf, turkey, or chicken. The starch section may contain pasta, rice, or potatoes. Edge learning makes it possible for operators to click and drag bounding boxes around characteristic features on a meal tray, fixing defined tray sections for training.
Next, the operator reviews a handful of images, classifying each possible class. Frequently, this can be done in a few minutes, with as few as three to five images for each class. During high-speed operation, the edge learning system can accurately classify the different sections. To accommodate entirely new classes or new varieties of existing classes during production, the tool can be updated with a few images in each new category.
For complex or highly customized applications, traditional deep learning is an ideal solution because it provides the capacity to process large and highly detailed image sets. Often, such applications involve objects with significant variations, which demands robust training capabilities and advanced computational power. Image sets with hundreds or thousands of images must be used for training to account for such significant variation and to capture all potential outcomes.
Enabling users to analyze such image sets quickly and efficiently, traditional deep learning delivers an effective solution for automating sophisticated tasks. Full-fledged deep learning products and open-source frameworks are well-designed to address complex applications. However, many factory automation applications entail far less complexity, making edge learning a more suitable solution.
With algorithms designed specifically for factory automation requirements and use cases, edge learning eliminates the need for an external GPU and hundreds or thousands of training images. Such pretraining, supported by appropriate traditional parameterized analytical machine vision tools, can vastly improve many machine vision tasks. The result is edge learning, which combines the power of deep learning with a light and fast set of vision tools that line engineers can apply daily to packaging problems and other factory automation challenges.
Compared with deep learning solutions that can require hours to days of training and hundreds to thousands of images, edge learning tools are typically trained in minutes using a few images per class. Edge learning streamlines deployment to allow fast ramp-up for manufacturers and the ability to adjust quickly and easily to changes.
This ability to find variable patterns in complex systems makes deep learning machine vision an exciting solution for inspecting objects with inconsistent shapes and defects, such as flexible packaging in first aid kits.
For the purposes of edge learning, Cognex has combined traditional analytical machine vision tools in ways specific to the demands of each application, eliminating the need to chain vision tools or devise complex logic sequences. Such tools offer fast preprocessing of images and the ability to extract density, edge, and other feature information that is useful for detecting and analyzing manufacturing defects. By finding and clarifying the relevant parts of an image, these tools reduce the computational load of deep learning.
For example, packing a lot of sophisticated hardware into a small form factor, Cognexs In-Sight 2800 vision system runs edge learning entirely on the camera. The embedded smart camera platform includes an integrated autofocus lens, lighting, and an image sensor. The heart of the device is a 1.6-MPixel sensor.
An autofocus lens keeps the object of interest in focus, even as the FOV or distance from the camera changes. Smaller and lighter than equivalent mechanical lenses, liquid autofocus lenses also offer improved resistance to shock and vibration.
Key for a high-quality image, the smart camera is available with integrated lighting in the form of a multicolor torchlight that offers red, green, blue, white, and infrared options. To maximize contrast, minimize dark areas, and bring out necessary detail, the torchlight comes with field-interchangeable optical accessories such as lenses, color filters, and diffusers, increasing system flexibility for handling numerous applications.
With 24 V of power, the In-Sight 2800 vision system has an IP67-rated housing, and Gigabit Ethernet connectivity delivers fast communication speed and image offloading. This edge learning-based platform also includes traditional analytical machine vision tools that can be parameterized for a variety of specialized tasks, such as location, measurement, and orientation.
Training edge learning is like training a new employee on the line. Edge learning users dont need to understand machine vision systems or deep learning. Rather, they only need to understand the classification problem that needs to be solved. If it is straightforwardfor instance, classifying acceptable and unacceptable parts as OK/NGthe user must only understand which items are acceptable and which are not.
Sometimes line operators can include process knowledge not readily apparent, derived from testing down the line, which can reveal defects that are hard for even humans to detect. Edge learning is particularly effective at figuring out which variations in a part are significant and which variations are purely cosmetic and do not affect functionality.
Edge learning is not limited to binary classification into OK/NG; it can classify objects into any number of categories. If parts need to be sorted into three or four distinct categories, depending on components or configurations, that can be set up just as easily.
To simplify factory automation and handle machine vision tasks of varying complexity, edge learning is useful in a wide range of industries, including medical, pharmaceutical, and beverage packaging applications.
Automated visual inspection is essential for supporting packaging quality and compliance while improving packaging line speed and accuracy. Fill level verification is an emerging use of edge learning technology. In the medical and pharmaceutical industries, vials filled with medication to a preset level must be inspected before they are capped and sealed to confirm that levels are within proper tolerances.
Unconfused by reflection, refraction, or other image variations, edge learning can be easily trained to verify fill levels. Fill levels that are too high or too low can be quickly classified as NG, while only those within the proper tolerances are classified as OK.
Another emerging use of edge learning technology is cap inspection in the beverage industry. Bottles are filled with soft drinks and juices and sealed with screw caps. If the rotary capper cross-threads a cap, applies improper torque, or causes other damage during the capping process, it can leave a gap that allows for contamination or leakage.
To train an edge learning system in capping, images showing well-sealed caps are labeled as good; images showing caps with slight gaps, which might be almost imperceptible to the human eye, are labeled as no good. After training is complete, only fully sealed caps are categorized as OK. All other caps are classified as NG.
While challenges for traditional rule-based machine vision continue to arise as packaging application complexity increases, easy-to-use edge learning on embedded smart camera platforms has proved to be a game-changing technology. Edge learning is more capable than traditional machine vision analytical tools and is extremely easy to use with previously challenging applications.
Read more from the original source:
Deep Learning at the Edge Simplifies Package Inspection - Vision Systems Design
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]