Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of FeAl | Scientific … – Nature.com
Magnetic multi-component moment tensor potential (mMTP)
The concept of magnetic multi-component Moment Tensor Potential (mMTP) presented in the current research is based on the previously developed non-magnetic MTP for multi-component systems41,42 and magnetic MTP for single-component systems35.
The mMTP potential is local, i.e., the energy of the atomistic system is a sum of energies of individual atoms:
$$begin{aligned} E = sum _{i=1}^{N_a}E_i, end{aligned}$$
(1)
where i stands for the individual atoms in an (N_a)-atom system. We note that any configuration includes lattice vectors ({{varvec{L}}} = {{{varvec{l}}}_1,{{varvec{l}}}_2,{{varvec{l}}}_3}), atomic positions ({{varvec{R}}} = {{{varvec{r}}}_1, ldots , {{varvec{r}}}_{N_a}}), types (Z = {z_1,ldots ,z_{N_{a}}}) (we also denote (N_{rm types}) by the total number of atomic types in the system), and magnetic moments (M = {m_1,ldots ,m_{N_a}}). The energy of the atom (E_i), in turn, has the form:
$$begin{aligned} E_i = sum _{alpha =1}^{alpha _{rm max}} xi _{alpha }B_{alpha }({mathfrak n}_i), end{aligned}$$
(2)
where ({{varvec{xi }}} = {xi _{alpha } }) are the linear parameters to be optimized and (B_alpha) are the so-called basis functions, which are contractions of the descriptors25 of atomistic environment ({mathfrak n}_i), yielding a scalar. The (alpha _text {max}) parameter can be changed to provide potentials with different amount of parameters35.
The descriptors are composed of the radial part, i.e., the scalar function depending on the interatomic distances and atomic magnetic moments, and the angular part, which is a tensor of rank (nu):
$$begin{aligned} M_{mu ,nu }({mathfrak n}_i)=sum _{j} f_{mu }(| {{varvec{r}}}_{ij}|,z_i,z_j,m_i,m_j)underbrace{{{varvec{r}}}_{ij}otimes ...otimes {{varvec{r}}}_{ij}}_nu text { times }, end{aligned}$$
(3)
where ({mathfrak n}_i) stands for the atomic environment, including all the atoms within the (R_text {cut}) distance (or less) from the central atom i, (mu) is the number of the radial function, (nu) is the rank of the angular part tensor, (|{{varvec{r}}}_{ij}|) is the distance between the atoms i and j, (z_i) and (z_j) are the atomic types, (m_i) and (m_j) are the magnetic moments of the atoms.
The radial functions are expanded in a basis of Chebyshev polynomials:
$$begin{aligned} f_{mu }(|r_{ij}|,z_i,z_j,m_i,m_j) = sum _{zeta =1}^{N_{phi }} sum _{beta =1}^{N_{psi }}sum _{gamma =1}^{N_{psi }}c_{mu ,z_i,z_j}^{zeta ,beta ,gamma } phi _{zeta }(|{varvec{r}}_{ij}|) psi _{beta }(m_i)psi _{gamma }(m_j) (R_{rm cut} - |{varvec{r}}_{ij}|)^2. end{aligned}$$
(4)
Here ({{varvec{c}}} = {c_{mu ,z_i,z_j}^{zeta ,beta ,gamma }}) are the radial parameters to be optimized, each of the functions (phi _{zeta }(|{varvec{r}}_{ij}|)), (psi _{beta }(m_i)), (psi _{gamma }(m_i)) is a Chebyshev polynomial of order (zeta), (beta) and (gamma) correspondingly, taking values from (-1) to 1. The function (phi _{zeta }(|{varvec{r}}_{ij}|)) yields the dependency on the distance between the atoms i and j, while the functions (psi _{beta }(m_i)) and (psi _{gamma }(m_j)) yield the dependency on the magnetic moments of the atoms i and j, correspondingly. The arguments of the functions (phi _{zeta }(|{varvec{r}}_{ij}|)) are on the interval ((R_{rm min},R_{rm cut})), where (R_{rm min}) and (R_{rm cut}) are the minimum and maximum distance, correspondingly, between the interacting atoms. The functions (psi _{beta }(m_i)) and (psi _{gamma }(m_j)) are of the same structure, which we explain for the case of the former one. The argument of the function (psi _{beta }(m_i)) is the magnetic moment of the atom i, taking the values on the ((-M_{rm max}^{z_i},M_{rm max}^{z_i})) interval. The value (M_{rm max}^{z_i}) itself depends on the type of atom (z_i), and is determined as the maximal absolute value of the magnetic moment for atom type (z_i) in the training set. Similar to the conventional MTP, the term ((R_{rm cut} - |{varvec{r}}_{ij}|)^2) provides smooth fading to 0 when approaching the (R_{rm cut}) distance, in accordance with the locality principle (1).
We note that magnetic degrees of freedom (m_i) from (4) are collinear, i.e., they can take negative or positive values as projection onto the Z axis (though the choice of the axis is arbitrary). This way, in comparison to non-magnetic atomistic systems with N atoms, in which the amount of degrees of freedom equals 4N (namely 3N for coordinates and N for types), for the description of magnetic systems additional N degrees of freedom are introduced, standing for the magnetic moment (m_i) of each atom. The amount of parameters entering the radial functions (Eq. 4) also increases in mMTP compared to the conventional MTP41,42. Namely, in MTP this number equals (N_{mu } cdot N_{phi } cdot N_{rm types}^2), while in mMTP it is (N_{mu } cdot N_{phi } cdot N_{rm types}^2 cdot N_{psi }^2). Thus, if we take (N_{psi } = 2) (which is used in the current research), the amount of the parameters entering the radial functions would be four times more in mMTP then in MTP.
We denote all the mMTP parameters by ({varvec{theta }}= {{varvec{xi }}, {varvec{c}} }) and the total energy (1) of the atomic system by (E=E({{varvec{theta }}})=E({{varvec{theta }}};M)=E({{varvec{theta }}};{{varvec{L}}},{{varvec{R}}},Z,M)).
The tensor (Eq. (4)) includes collinear magnetic moments in its functional form. However, it is not invariant with respect to the inversion of magnetic moments, i.e., (E({{varvec{theta }}};M) ne E({{varvec{theta }}};-M)), while both original and spin-inverted configurations should yield the same energy due to the arbitrary orientation of the projection axis, which we further call the magnetic symmetry.
We use data augmentation followed by explicit symmetrization with respect to magnetic moments to train a symmetric mMTP as we discuss below. Assume we have K configurations in the training set with DFT energies (E_k^{rm DFT}), forces ({varvec{f}}^{rm DFT}_{i,k}), and stresses (sigma ^{rm DFT}_{ab,k}) ((a,b=1,2,3)) calculated. We find the optimal parameters (bar{{{varvec{theta }}}}) (fit mMTP) by minimizing the objective function:
$$begin{aligned} &sum _{k=1}^{K} Biggl [ w_{rm e} Biggl | frac{E_k ({varvec{theta }}; M) + E_{k}({varvec{theta }}; -M)}{2} - E_{k}^{rm DFT}Biggr |^2 \&quad + w_{rm f} sum _{i=1}^{N_a} Biggl | frac{{varvec{f}}_{i,k}({varvec{theta }};M) + {varvec{f}}_{i,k}({varvec{theta }};-M)}{2} - {varvec{f}}^{rm DFT}_{i,k}Biggr |^2 \&quad +w_{rm s} sum _{a,b=1}^{3} Biggl | frac{sigma _{ab,k}({varvec{theta }};M)+sigma _{ab,k}({varvec{theta }};-M)}{2} -sigma ^{rm DFT}_{ab,k}Biggr |^2 Biggr ], end{aligned}$$
(5)
where (w_{rm e}), (w_{rm f}), and (w_{rm s}) are non-negative weights. By minimizing (5) we find such optimal parameters (bar{{{varvec{theta }}}}) that yield (E_k (bar{{varvec{theta }}}; M) approx E_k (bar{{varvec{theta }}}; -M)), (k = 1, ldots , K) (the same fact takes place for the mMTP forces and stresses), i.e., we symmetrize the training set to make mMTP learn the required symmetry from the data itselfthis is called data augmentation.
Next, we modify mMTP to make the energy used for the simulations (e.g., relaxation of configurations) to satisfy the exact symmetry:
$$begin{aligned} E^{rm symm}(bar{{{varvec{theta }}}};M) = dfrac{E(bar{{varvec{theta }}};M)+E(bar{{varvec{theta }}};-M)}{2}. end{aligned}$$
(6)
That is, we substitute the mMTP energy (1) into (6) and get a functional form which satisfies the exact identity (E^{rm symm}(bar{{{varvec{theta }}}};M) = E^{rm symm}(bar{{{varvec{theta }}}};-M)) for any configuration. We also note that (E (bar{{varvec{theta }}}) approx E^{rm symm}(bar{{{varvec{theta }}}})).
We use the cDFT approach with hard constraints(i.e., Lagrange multiplier) as proposed by Gonze et al. in Ref.19. One way to formulate it is to first note that in a single-point DFT calculation we minimize the Kohn-Sham total energy functional (E[rho ; {{varvec{R}}}]) with respect to the electronic density (rho =rho (r)) (here (rho) combines the spin-up and spin-down electron densities), keeping the nuclei position ({{varvec{R}}}) fixed. In other words, we solve the following minimization problem:
$$begin{aligned} E_{rm DFT}({{varvec{R}}}) = min _rho E[rho ; {{varvec{R}}}], end{aligned}$$
and from the optimal (rho ^* = mathrm{arg,min} E[rho ; {{varvec{R}}}]) we can, e.g., find magnetization (m(r) = rho ^*_+ - rho ^*_-), where the subscripts denote the spin-up ((+)) and spin-down () densities. The magnetic moment of the ith atom can be found by integrating m(r) over some (depending on the partitioning scheme) region around the atom:
$$begin{aligned} m_i = int _{Omega _i} m(r) textrm{d}r. end{aligned}$$
(7)
Since the minimizer (rho ^*) depends on ({{varvec{R}}}), (m_i) are also the functions of ({{varvec{R}}}).
According to the cDFT approach19, we now formulate the problem of minimizing (E[rho ; {{varvec{R}}}]) in which not only ({{varvec{R}}}),but also (rho) is allowed to change only subject to constraints (7):
$$begin{aligned} begin{array}{rcl} E_{rm cDFT}(rho, {{varvec{R}}}, M) =&{} min _rho &{} E[rho ; {{varvec{R}}}] \ &{} text {subject to} &{} m_i = int _{Omega _i} big (rho _{+}(r)-rho _-(r)big ) textrm{d}r. end{array} end{aligned}$$
The algorithmic details of how this minimization problem is solved, and how the energy derivatives (forces, stresses, torques) are computed, are described in detail in Ref.19.
We used the ABINIT code43,44 for DFT (and cDFT recently developed and described in Ref.19) calculations with (6times 6times 6) k-point mesh and cutoff energy of 25 Hartree (about 680 eV). We utilized the PAW PBE method with the generalized gradient approximation. We applied constraints on magnetic moments of all atoms during cDFT calculations.
We fitted an ensemble of five mMTPs with 415 parameters in order to quantify the uncertainty of mMTPs predictions. For each mMTP we took (R_{rm min} = 2.1 ~) , (R_{rm cut} = 4.5 ~), (M_{rm max}^{rm Al} = 0.1 ~mu _B), and (M_{rm max}^{rm Fe} = 3.0 ~mu _B). The weights in the objective function (5) were (w_{rm e} = 1), (w_{rm f} = 0.01) (^2), and (w_{rm s} = 0.001).
See the article here:
Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of FeAl | Scientific ... - Nature.com
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]