Column: Simplifying live broadcast operations using AI and machine learning – NewscastStudio
Subscribe toNewscastStudio's newsletter for the latest in broadcast design and engineering delivered to your inbox.
Artificial Intelligence and machine learning are seen as pillars of the next generation of technological advancement in broadcast media for a variety of reasons, including the ability to sift through mountains of data while identifying anomalies, spotting trends and alerting users to potential problems before they occur without the need for human intervention. With the more data they ingest these models improve over time, meaning the more ML models utilized across a variety of applications, the faster and more complex the insights derived from these tools become.
But to truly understand why machine learning provides enormous value for broadcasters, lets break it down into use cases and components within broadcast media where AI and ML can have the greatest impact.
Imagine a live sporting event stopsstreaming,or that framesstart dropping for no apparent reason.Viewers are noticing quality problems and starting to complain.Technicians are baffled and customers may have just missed the play of the year. Revenue therefore takes a hit and executives want to know what is to blame.
These are situations every broadcaster wants to avoid, and in these tense moments there is no time to lose viewers are flipping to otherservices andad revenue is being lost by the second. What went wrong? Who or what is to blame and how can we get this back up and running immediately, while mitigating this risk in the future? Modern broadcasters need to know before problems happen not be caught in a crisis trying to pick up the pieces after an incident.
Advertisement
The promise of our interconnected world means video workflowsareinteracting, intertwining, and integrating in new ways every day, simultaneously increasing information sharing, agility and connectivity while producing increasingly complex challenges and issues to diagnose. As more on-prem and cloud resources are connected with equipment from different vendors, sources, and partner organizationsdistributing to new device types,thereisan enormous, ever-expanding number of log and telemetrydata produced.
As a result, broadcastengineers have more information than they can effectively process. They routinely silence frequent alerts and alarms because with too much data overload it can be impossible to tellwhat isimportant and what is not. This inevitably leaves teams overwhelmed and lacking insights.
Advanced analytics and ML can help with these problems by making sense of overwhelming quantities of data, allowing human operators to sift through insignificant clutter and to focus and understand where issues are likely to occur before failures are noticed. Advanced analytics provide media companies the unprecedented opportunity to leverage sophisticated event correlation, data aggregation, deep learning, and virtually limitless applications to improve broadcast workflows. The benefit is to be able to do more with less, to innovate faster than the competition and prepare for the future both by increasing your knowledge base and opening the potential for cost reduction and time savings, honing in on the crucial details behind the data that matters most to both their users and organization.
One of the biggest challenges facing broadcast operations engineers is to recognize when things are not working before the viewers experience is affected. In a perfect world operators and engineers want to predict outages and identify potential issues ahead of time. Machine learning models can be orchestrated to recognize the normal ranges based on hundreds to thousands of measurements beyond the ability of a human operator and alert the operator in real time when a stream anomaly occurs. While this process normally requires monitoring logs on dozens of machines and keeping track of the performance of network links between multiple locations and partners, using ML allows the system to identify patterns in large data sets and helps operators focus only on workflow anomalies dramatically reducing workload.
Anomaly detection works by building a predictive model of what the next measurements related to a stream will be for example, the round-trip time of packets on the network or the raw bitrate of the stream and then determining how different the expected value is from the next measurement. As a tool to sort through normal and abnormal streams, this can be essential, especially when managing hundreds or thousands of concurrent channels. One benefit of anomalous behavior identification would be enabling an operator to switch to a backup link that uses a different network link before a failure occurs.
Anomaly detection can also be a vital component of reducing needless false alarms and reducing time waste. Functionality such as customizable alerting preferences and aggregated health scores generated by threat-gauging data points assist operators to sift through and assimilate data trends so they can focus where they really need to. In addition, predictive and proactive alerting can be orders of magnitude less expensive and allow broadcasters to be able to identify the root causes of instability and failure faster and easier.
A major challenge to any analytics system is data collection. When you have a video workflow comprised of machines in disparate data centers running different operating systems and tools, it can be difficult to assimilate and standardize reliable, relevant data that can be used in any AI/ML system. While there are natural data aggregation points in most broadcast architectures for example if you are using a cloud operations and remote management platform or common protocol stack this is certainly not a given.
Although standards exist for how video data should be formatted and transmitted, few actually describe how machine data, network measurements, and other telemetry should be collected, transmitted and stored. Therefore it is essential to select a technology partner that sends data to a common aggregation point where it is parsed, normalized and put into a database while supporting multiple protocols to support a robust AI/ML solution.
Once you have a method for collecting real-time measurements from your video workflow, you can feed this data into a ML engine to detect patterns. From there you can train the system not only to understand normal operating behavior for anomaly detection, but also to recognize specific patterns leading up to video degradation events. With these patterns determined you can also identify common metadata related to degradation events across systems, allowing you to identify that the degradation event is related to a particular shared network segment.
For example, if a particular ISP in a particular region continues to experience latency or blackout issues, the system learns to pick up on warning signs ahead of time and notifies the engineer before an outage preventing issues proactively while simultaneously improving root cause identification within your entire ecosystem. Developers can also see that errors are more often observed using common encoder or network hardware settings. Unexpected changes in the structure of the video stream or the encoding quality might also be important signals of impending problems. By observing correlations, ML gives operators key insights into the causes of problems and how to solve them.
Predictive analytics, alerts and correlations are useful for automated failure prediction and alerting, but when all else fails, ML models can also be used to help operators concentrate on areas of concern following an outage, making retrospective analysis much easier and faster via root cause analysis.
With workflows that consist of dozens of machines and network segments, it is inherently difficult to know where to look for problems. However, ML models, as we have seen, provide trend identification and help visualize issues using data aggregation. Even relatively straightforward visualizations of how a stream deviates from the norm are incredibly valuable, whether in the form of historical charts, customizable reports or questions as simple as how a particular stream compares to a similar recent stream.
Leveraging AI and ML to improve operational efficiency and quality provides a powerful advantage while preparing broadcasters for the future of live content delivery over IP. Selecting the right vendor for system monitoring and orchestration that integrates AI and ML capabilities can help your organization make sense of the vast amounts of data being sent across the media supply chain and be a powerful differentiator.
As experiments to test hypotheses are essential to the traditional learning process, the same goes for ML models. Building, training, deploying, and updating ML models are inherently complex, meaning providers in cooperation with their users must continue to iterate, compare results, and adjust accordingly to understand the why behind the data, improving root cause analysis and the customer experience.
Machine learning presents an unprecedented opportunity for sophisticated event correlation, data aggregation, deep learning, and virtually unlimited applications across broadcast media operations as it evolves exponentially year to year. As models become more informed and interconnected, problem solving and resolution technology based on deep learning and AI will become increasingly essential tools. Broadcast organizations looking to prepare themselves for such a future would be wise to prepare for this eventuality by choosing the right vendor to integrate AI and ML enabled tools into their workflows.
Andrew leads Zixis Intelligent Data Platform initiative, bringing AI and ML to live broadcast operations. Before Zixi he led the video platform product team at Brightcove where he spent 6 years working with some of the largest broadcasters and media companies. Particular areas of interest include live streaming, analytics, ad integration, and video players. Andrew has an MBA from Babson College and a BA from Oberlin College.
Continue reading here:
Column: Simplifying live broadcast operations using AI and machine learning - NewscastStudio
- Machine Learning: Your Ticket to a Thriving Career in the Tech World - The Impressive Times - July 14th, 2025 [July 14th, 2025]
- Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal... - July 14th, 2025 [July 14th, 2025]
- Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics - Nature - July 14th, 2025 [July 14th, 2025]
- Development and validation of a machine learning-based nomogram for survival prediction of patients with hilar cholangiocarcinoma after... - July 12th, 2025 [July 12th, 2025]
- Geochemical-integrated machine learning approach predicts the distribution of cadmium speciation in European and Chinese topsoils - Nature - July 12th, 2025 [July 12th, 2025]
- Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma... - July 12th, 2025 [July 12th, 2025]
- Application of supervised machine learning and unsupervised data compression models for pore pressure prediction employing drilling, petrophysical,... - July 12th, 2025 [July 12th, 2025]
- Machine learning identifies lipid-associated genes and constructs diagnostic and prognostic models for idiopathic pulmonary fibrosis - Orphanet... - July 12th, 2025 [July 12th, 2025]
- An evaluation methodology for machine learning-based tandem mass spectra similarity prediction - BMC Bioinformatics - July 12th, 2025 [July 12th, 2025]
- The Rise of AI in Trading: Machine Learning and the Stock Market - Disruption Banking - July 12th, 2025 [July 12th, 2025]
- Integrative analysis identifies IL-6/JUN/MMP-9 pathway destroyed blood-brain-barrier in autism mice via machine learning and bioinformatic analysis -... - July 12th, 2025 [July 12th, 2025]
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]
- Machine learning-based identification of key factors and spatial heterogeneity analysis of urban flooding: a case study of the central urban area of... - July 10th, 2025 [July 10th, 2025]
- Developing machine learning frameworks to predict mechanical properties of ultra-high performance concrete mixed with various industrial byproducts -... - July 10th, 2025 [July 10th, 2025]
- Small Drones Market Trend Analysis and Forecast Report 2025-2034 | AI and Machine Learning Revolutionizing Autonomous Operations, Trade Tariffs Push... - July 10th, 2025 [July 10th, 2025]
- When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning - Dataconomy - July 10th, 2025 [July 10th, 2025]
- New Study Uses Gait Data and Machine Learning for Early Detection of Anxiety and Depression - AZoSensors - July 10th, 2025 [July 10th, 2025]
- Machine Learning and the Evolution of Mobile Apps - CIO Applications - July 10th, 2025 [July 10th, 2025]
- Artificial Intelligence, Machine Learning, and Big Data in Thailand: Legal and Regulatory Developments 2025 - Lexology - July 10th, 2025 [July 10th, 2025]
- Karen Hao on how the AI boom became a new imperial frontier - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Machine Learning and AI in Enhancing Image Analysis of 3D Samples - Drug Target Review - July 8th, 2025 [July 8th, 2025]
- Gartner Predicts Over 40% of Agentic AI Projects Will Be Canceled by End of 2027 - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Explainable machine learning model for predicting the transarterial chemoembolization response and subtypes of hepatocellular carcinoma patients - BMC... - July 8th, 2025 [July 8th, 2025]
- Identification and validation of glucocorticoid receptor and programmed cell death-related genes in spinal cord injury using machine learning - Nature - July 8th, 2025 [July 8th, 2025]
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]
- Machine learning for Parkinsons disease: a comprehensive review of datasets, algorithms, and challenges - Nature - July 4th, 2025 [July 4th, 2025]
- Cervical cancer prediction using machine learning models based on routine blood analysis - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing anomaly detection in IoT-driven factories using Logistic Boosting, Random Forest, and SVM: A comparative machine learning approach - Nature - July 4th, 2025 [July 4th, 2025]
- Predicting car accident severity in Northwest Ethiopia: a machine learning approach leveraging driver, environmental, and road conditions - Nature - July 4th, 2025 [July 4th, 2025]
- Sensormatic Solutions Adds Machine Learning to Shrink Analyzer - Ink World magazine - July 4th, 2025 [July 4th, 2025]
- Exploring the link between the ZJU index and sarcopenia in adults aged 2059 using NHANES and machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]