Column: Simplifying live broadcast operations using AI and machine learning – NewscastStudio
Subscribe toNewscastStudio's newsletter for the latest in broadcast design and engineering delivered to your inbox.
Artificial Intelligence and machine learning are seen as pillars of the next generation of technological advancement in broadcast media for a variety of reasons, including the ability to sift through mountains of data while identifying anomalies, spotting trends and alerting users to potential problems before they occur without the need for human intervention. With the more data they ingest these models improve over time, meaning the more ML models utilized across a variety of applications, the faster and more complex the insights derived from these tools become.
But to truly understand why machine learning provides enormous value for broadcasters, lets break it down into use cases and components within broadcast media where AI and ML can have the greatest impact.
Imagine a live sporting event stopsstreaming,or that framesstart dropping for no apparent reason.Viewers are noticing quality problems and starting to complain.Technicians are baffled and customers may have just missed the play of the year. Revenue therefore takes a hit and executives want to know what is to blame.
These are situations every broadcaster wants to avoid, and in these tense moments there is no time to lose viewers are flipping to otherservices andad revenue is being lost by the second. What went wrong? Who or what is to blame and how can we get this back up and running immediately, while mitigating this risk in the future? Modern broadcasters need to know before problems happen not be caught in a crisis trying to pick up the pieces after an incident.
Advertisement
The promise of our interconnected world means video workflowsareinteracting, intertwining, and integrating in new ways every day, simultaneously increasing information sharing, agility and connectivity while producing increasingly complex challenges and issues to diagnose. As more on-prem and cloud resources are connected with equipment from different vendors, sources, and partner organizationsdistributing to new device types,thereisan enormous, ever-expanding number of log and telemetrydata produced.
As a result, broadcastengineers have more information than they can effectively process. They routinely silence frequent alerts and alarms because with too much data overload it can be impossible to tellwhat isimportant and what is not. This inevitably leaves teams overwhelmed and lacking insights.
Advanced analytics and ML can help with these problems by making sense of overwhelming quantities of data, allowing human operators to sift through insignificant clutter and to focus and understand where issues are likely to occur before failures are noticed. Advanced analytics provide media companies the unprecedented opportunity to leverage sophisticated event correlation, data aggregation, deep learning, and virtually limitless applications to improve broadcast workflows. The benefit is to be able to do more with less, to innovate faster than the competition and prepare for the future both by increasing your knowledge base and opening the potential for cost reduction and time savings, honing in on the crucial details behind the data that matters most to both their users and organization.
One of the biggest challenges facing broadcast operations engineers is to recognize when things are not working before the viewers experience is affected. In a perfect world operators and engineers want to predict outages and identify potential issues ahead of time. Machine learning models can be orchestrated to recognize the normal ranges based on hundreds to thousands of measurements beyond the ability of a human operator and alert the operator in real time when a stream anomaly occurs. While this process normally requires monitoring logs on dozens of machines and keeping track of the performance of network links between multiple locations and partners, using ML allows the system to identify patterns in large data sets and helps operators focus only on workflow anomalies dramatically reducing workload.
Anomaly detection works by building a predictive model of what the next measurements related to a stream will be for example, the round-trip time of packets on the network or the raw bitrate of the stream and then determining how different the expected value is from the next measurement. As a tool to sort through normal and abnormal streams, this can be essential, especially when managing hundreds or thousands of concurrent channels. One benefit of anomalous behavior identification would be enabling an operator to switch to a backup link that uses a different network link before a failure occurs.
Anomaly detection can also be a vital component of reducing needless false alarms and reducing time waste. Functionality such as customizable alerting preferences and aggregated health scores generated by threat-gauging data points assist operators to sift through and assimilate data trends so they can focus where they really need to. In addition, predictive and proactive alerting can be orders of magnitude less expensive and allow broadcasters to be able to identify the root causes of instability and failure faster and easier.
A major challenge to any analytics system is data collection. When you have a video workflow comprised of machines in disparate data centers running different operating systems and tools, it can be difficult to assimilate and standardize reliable, relevant data that can be used in any AI/ML system. While there are natural data aggregation points in most broadcast architectures for example if you are using a cloud operations and remote management platform or common protocol stack this is certainly not a given.
Although standards exist for how video data should be formatted and transmitted, few actually describe how machine data, network measurements, and other telemetry should be collected, transmitted and stored. Therefore it is essential to select a technology partner that sends data to a common aggregation point where it is parsed, normalized and put into a database while supporting multiple protocols to support a robust AI/ML solution.
Once you have a method for collecting real-time measurements from your video workflow, you can feed this data into a ML engine to detect patterns. From there you can train the system not only to understand normal operating behavior for anomaly detection, but also to recognize specific patterns leading up to video degradation events. With these patterns determined you can also identify common metadata related to degradation events across systems, allowing you to identify that the degradation event is related to a particular shared network segment.
For example, if a particular ISP in a particular region continues to experience latency or blackout issues, the system learns to pick up on warning signs ahead of time and notifies the engineer before an outage preventing issues proactively while simultaneously improving root cause identification within your entire ecosystem. Developers can also see that errors are more often observed using common encoder or network hardware settings. Unexpected changes in the structure of the video stream or the encoding quality might also be important signals of impending problems. By observing correlations, ML gives operators key insights into the causes of problems and how to solve them.
Predictive analytics, alerts and correlations are useful for automated failure prediction and alerting, but when all else fails, ML models can also be used to help operators concentrate on areas of concern following an outage, making retrospective analysis much easier and faster via root cause analysis.
With workflows that consist of dozens of machines and network segments, it is inherently difficult to know where to look for problems. However, ML models, as we have seen, provide trend identification and help visualize issues using data aggregation. Even relatively straightforward visualizations of how a stream deviates from the norm are incredibly valuable, whether in the form of historical charts, customizable reports or questions as simple as how a particular stream compares to a similar recent stream.
Leveraging AI and ML to improve operational efficiency and quality provides a powerful advantage while preparing broadcasters for the future of live content delivery over IP. Selecting the right vendor for system monitoring and orchestration that integrates AI and ML capabilities can help your organization make sense of the vast amounts of data being sent across the media supply chain and be a powerful differentiator.
As experiments to test hypotheses are essential to the traditional learning process, the same goes for ML models. Building, training, deploying, and updating ML models are inherently complex, meaning providers in cooperation with their users must continue to iterate, compare results, and adjust accordingly to understand the why behind the data, improving root cause analysis and the customer experience.
Machine learning presents an unprecedented opportunity for sophisticated event correlation, data aggregation, deep learning, and virtually unlimited applications across broadcast media operations as it evolves exponentially year to year. As models become more informed and interconnected, problem solving and resolution technology based on deep learning and AI will become increasingly essential tools. Broadcast organizations looking to prepare themselves for such a future would be wise to prepare for this eventuality by choosing the right vendor to integrate AI and ML enabled tools into their workflows.
Andrew leads Zixis Intelligent Data Platform initiative, bringing AI and ML to live broadcast operations. Before Zixi he led the video platform product team at Brightcove where he spent 6 years working with some of the largest broadcasters and media companies. Particular areas of interest include live streaming, analytics, ad integration, and video players. Andrew has an MBA from Babson College and a BA from Oberlin College.
Continue reading here:
Column: Simplifying live broadcast operations using AI and machine learning - NewscastStudio
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]