Code^Shift Lab Aims To Confront Bias In AI, Machine Learning – Texas A&M Today – Texas A&M University Today
As machines increasingly make high-risk decisions, a new lab at Texas A&M aims to reduce bias in artificial intelligence and machine learning.
Getty Images
The algorithms underpinning artificial intelligence and machine learning increasingly influence our daily lives. They can decide everything from which video were recommended to watch next on YouTube to who should be arrested based on facial recognition software.
But the data used to train these systems often replicate the harmful social biases of the engineers who build them. Eliminating this bias from technology is the focus of Code^Shift, a new data science lab at Texas A&M University that brings together faculty members and researchers from a variety of disciplines across campus.
Its an increasingly critical initiative, said Lab Director Srividya Ramasubramanian, as more of the world becomes automated. Machines, rather than humans, are making many of the decisions around us, including some that are high-risk.
Code^Shift tries to shift our thinking about the world of code or coding in terms of how we can be thinking of data more broadly in terms of equity, social healing, inclusive futures and transformation, said Ramasubramanian, professor of communication in the College of Liberal Arts. A lot of trauma and a lot of violence has been caused, including by media and technologies, and first we need to acknowledge that, and then work toward reparations and a space of healing individually and collectively.
Bias in artificial intelligence can have major impacts. In just one recent example, a man has sued the Detroit Police Department after he was arrested and jailed for shoplifting after being falsely identified by the departments facial recognition technology. The American Civil Liberties Union calls it the first case of its kind in the United States.
Code^Shift will attempt to confront this issue using a collaborative research model that includes Texas A&M experts in social science, data science, engineering and several other disciplines. Ramasubramanian said eight different colleges are represented, and more than 100 people attended the labs virtual launch last month.
Experts will work together on research, grant proposals and raising awareness in the broader public of the issue of bias in machine learning and artificial intelligence. Curriculum may also be developed to educate professionals in the tech industry, such as workshops and short courses on anti-racism literacy, gender studies and other topics that are sometimes not covered in STEM fields.
The labs name references coding, which is foundational to todays digital world. Its also a play on code-switching the way people change the languages they use or how they express themselves in conversation depending on the context.
As an immigrant, Ramasubramanian says shes familiar with living in two worlds. She offers several examples of computer-based biases shes encountered in everyday life, including an experience attempting to wash her hands in an airport bathroom.
Standing at the sink, Ramasubramanian recalls, she held her hands under the faucet. As she moved them back and forth and the taps stayed dry, she realized that the sensors used to turn the water on could not recognize her hands. It was the same case with the soap dispenser.
It was something I never thought much about, but later on I was reading an article about this topic that said many people with darker skin tones were not recognized by many systems, she said.
Similarly, when Ramasubramanian began to work remotely during the COVID-19 pandemic, she noticed that her skin and hair color made her disappear against the virtual Zoom backgrounds. Voice recognition software she attempted to use for dictation could not understand her accent.
The system is treating me as the other and different in many, many ways, she said. And in return, there are serious consequences of who feels excluded, and thats not being captured.
Co-director Lu Tang, an assistant professor in the College of Liberal Arts who examines health disparity in underserved populations, says her research shows that Black patients, for example, must have much more severe symptoms that non-Black patients in order to be assigned certain diagnoses in computer software used in hospitals.
She said this is just one instance of the disparities embedded in technology. Tangs research also focuses on how machine learning algorithms used on social media platforms are more likely to expose people to misinformation about health.
If I inhabit a social media space where a lot of my friends hold certain erroneous attitudes about things like vaccines or COVID-19, I will repeatedly be exposed to the same information without being exposed to different information, she said.
Tang also is interested in what she calls the filter bubble the phenomenon of where an algorithm leads a user on TikTok, YouTube or other platforms based on content theyve watched in the past or what other people with similar viewing behaviors are watching at that moment. Watching just one video containing vaccine misinformation could prompt the algorithm to continue recommending similar videos. Tang said the filter bubble is another added layer that influences the content that people are exposed to.
I think to really understand this society and how we are living today, we as social scientists and humanities scholars need to acknowledge and understand the way computers are influencing the way society is run today, Tang said. I feel like working with computer science engineers is a way for us to combine our strengths to understand a lot of the problems we have in this society.
Computer Science and Engineering Assistant Professor Theodora Chaspari, another co-director of Code^Shift, agrees that minds from different disciplines are needed to design better systems.
To build an inclusive system, she said, engineers need to include representative data from all populations and social groups. This could help facial recognition algorithms better recognize faces of all races, she said, because a system cannot really identify a face until it has seen many, many faces. But engineers may not understand more subtle sources of bias, she said, which is why social and life sciences experts are needed to help with the thoughtful design of more equitable algorithms.
The goal of Code^Shift is to help bridge the gap between systems and people, Chaspari said. The lab will do this by raising awareness through not only research, but education.
Were trying to teach our students about fairness and bias in engineering and artificial intelligence, Chaspari said. Theyre pretty new concepts, but are very important for the new, young engineers who will come in the next years.
So far, Code^Shift has held small group discussion on topics like climate justice, patient justice, gender equity and LGBTQ issues. A recent workshop focused on health equity and the ways in which big data and machine learning can be used to take into account social structures and inequalities.
Ramasubramanian said a full grant proposal to the Texas A&M Institute of Data Science Thematic Data Science Labs Program is also being developed. The labs directors hope to connect with more colleges and make information accessible to more people.
They say collaboration is critical to the initiative. The people who create algorithms often come from small groups, Ramasubramanian said, and are not necessarily collaborating with social scientists. Code^Shift asks for more accountability in how systems are created: who has access to the data, whos deciding how to use it, and how is it being shared?
Texas A&M is home to some of the worlds top data scientists, Ramasubramanian said, making it an important place to have conversations about difficult topics like data equity.
To me, we should also be leaders in thinking about the ethical, social, health and other impacts of data, she said.
To join the Code^Shift mailing list or learn more about collaborating with the lab, contact Ramasubramanian at srivi@tamu.edu.
Read this article:
Code^Shift Lab Aims To Confront Bias In AI, Machine Learning - Texas A&M Today - Texas A&M University Today
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]