Characterization of PANoptosis-related genes in Crohn’s disease by integrated bioinformatics, machine learning and … – Nature.com
GEO dataset integration and immune landscape of CD
We constructed a combined dataset covering 279 CD samples and 224 control samples from mucosa after the removal of batch effects (Fig.2A,B). A broadly uncoordinated immune response is an indispensable hallmark of CD. With the aim of revealing the immune landscape, we scored the immune cell infiltration of CD patients and controls via the ssGSEA method. As illustrated in Fig.2C, the infiltration of 20 immune cells in the CD group and control group was significantly different, among which only the scores of T helper 17 (Th17) cells were lower in CD tissues than in control tissues. We then performed a correlation analysis of distinct immune cells, as shown in Fig.2D. Interestingly, Th17 cells, CD56bright natural killer (NK) cells, CD56dim NK cells and monocytes showed inverse correlations with almost all other immune cells, whereas the other immune cells were generally positively correlated with one another, which deserves special attention.
GEO dataset combination and immune landscape of CD. (A) PCA between datasets before removal of batch effects. (B) PCA between integrated datasets after removal of batch effects. (C) Infiltration levels of 28 immune cell subtypes in CD samples and controls. The blue bars represent controls, and the red bars represent CD samples. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (D) Pearson correlation analysis of distinct immune cells. The purple squares represent positive correlations, and the orange squares represent inverse correlations. GEO Gene Expression Omnibus, CD Crohns disease, PCA principal component analysis.
A total of 1265 DEGs, consisting of 592 upregulated and 673 downregulated genes, were identified through differential expression analysis (Fig.3A). A list of possible PRGs was produced from previous research (Supplementary file 1: Table S1). Subsequently, we intersected the 1265 DEGs with 930 PRGs via a Venn diagram; thus, 130 DE-PRGs were identified (Fig.3B), which were further grouped in a heatmap (Fig.3C). The overall expression of these DE-PRGs in the CD group and control group is shown in Supplementary file 3: Fig. S1. We could conclude that the vast majority of DE-PRGs were expressed at higher levels in CD tissues than in control tissues.
Identification of DE-PRGs. (A) Volcano map of the DEGs with the cutoff threshold set at |log2 (fold change)|>1 and adj. p<0.05. The blue dots represent downregulated DEGs, the red dots represent upregulated DEGs, and the gray dots represent genes with no significant difference. (B) Venn diagram of DEGs and PRGs. Pink circle represents DEGs, blue circle represents PRGs, and their overlapping area represents DE-PRGs. (C) Clustered heatmap of the top 40 DE-PRGs. Each row represents one of the top 40 DE-PRGs, and each column represents one sample, either CD or normal. DE-PRGs differentially expressed PANoptosis-related genes, DEGs differentially expressed genes, PRGs PANoptosis-related genes, CD Crohns disease.
We then examined the latent functions and signaling pathways of the DE-PRGs. GO analysis revealed that these DE-PRGs were predominantly involved in regulation of apoptotic signaling pathway, leukocyte cellcell adhesion, regulation of inflammatory response (biological process); membrane raft, membrane microdomain, focal adhesion (cellular component); ubiquitin-like protein ligase binding, ubiquitin protein ligase binding, and phosphatase binding (molecular function) (Supplementary file 4: Fig. S2A). Additionally, DE-PRGs were notably enriched in apoptosis, proteoglycans in cancer, NOD-like receptor signaling pathway, among others, according to the KEGG results (Supplementary file 4: Fig. S2B). Moreover, a PPI network analysis of the DE-PRGs was performed and a complex network of the DE-PRGs was constructed (Supplementary file 5: Fig. S3).
To screen the hub DE-PRGs, we first capitalized on three algorithms, LASSO, SVM and RF, and discovered 20, 34 and 33 potential hub DE-PRGs, respectively (Fig.4AE). Afterward, 10 hub DE-PRGs were identified through the intersection of the machine learning results, namely CD44, cell death inducing DFFA like effector c (CIDEC), N-myc downstream regulated 1 (NDRG1), nuclear mitotic apparatus protein 1 (NUMA1), proliferation and apoptosis adaptor protein 15 (PEA15), recombination activating 1 (RAG1), S100 calcium binding protein A8 (S100A8), S100 calcium binding protein A9 (S100A9), TIMP metallopeptidase inhibitor 1 (TIMP1) and X-box binding protein 1 (XBP1) (Fig.4F). Next, we probed their interactions, as shown in Fig.4G. Most hub DE-PRGs, such as CD44, PEA15, S100A8, S100A9, TIMP1 and XBP1, were closely interrelated. Moreover, NDRG1, NUMA1 and RAG1 generally presented antagonistic effects on the other hub DE-PRGs. Finally, the diagnostic value of each hub DE-PRG in predicting CD was calculated based on our combined dataset (Fig.4H). All 10 hub DE-PRGs exhibited outstanding predictive performance with area under the curve (AUC) values greater than 0.740. Notably, the AUC reached as high as 0.871 when the 10 hub DE-PRGs were combined (Fig.4H). In addition, we conducted external validation on the GSE102133 and GSE207022 datasets, respectively. The results were satisfactory, with high AUC values (Supplementary file 6: Fig. S4).
Identification of the hub DE-PRGs. (A) Cross-validations of adjusted parameter selection in the LASSO model. Each curve corresponds to one gene. (B) LASSO coefficient analysis. Vertical dashed lines are plotted at the best lambda. (C) SVM algorithm for hub gene selection. (D) Relationship between the number of random forest trees and error rates. (E) Ranking of the relative importance of genes. (F) Venn diagram showing the 10 hub DE-PRGs identified by LASSO, SVM and RF. Pink circle represents potential hub DE-PRGs identified by RF, blue circle represents potential hub DE-PRGs identified by SVM, green circle represents potential hub DE-PRGs identified by LASSO, and their overlapping area represents the final hub DE-PRGs. (G) Chord diagram showing the correlations between the hub DE-PRGs. Red represents positive correlations between different genes and green represents negative correlations between different genes. (H) ROC curves of the hub DE-PRGs in CD diagnosis. DE-PRGs differentially expressed PANoptosis-related genes, LASSO least absolute shrinkage and selection operator, RF random forest, SVM support vector machine, ROC receiver operating characteristic, AUC area under the curve, CD Crohns disease.
Spearman correlation analysis was carried out to determine the interactions between the hub DE-PRGs and immune cells (Fig.5). CD44, PEA15, S100A8, S100A9, TIMP1 and XBP1 demonstrated noteworthy positive correlations with the infiltration of an abundance of immune cells, except for certain immune cells, such as monocytes and CD56bright NK cells. In contrast, NDRG1, NUMA1, and RAG1 were negatively associated with most types of immune cells, excluding a few immune cells such as monocytes. In addition, the CIDEC fell somewhere between these two extremes.
Spearman correlation analysis of hub DE-PRGs with immune cells. The correlations between CD44 (A), CIDEC (B), NDRG1 (C), NUMA1 (D), PEA15 (E), RAG1 (F), S100A8 (G), S100A9 (H), TIMP1 (I) and XBP1 (J) gene expressions with immune cells, respectively. The size of the dots represents the strength of gene correlation with immune cells; the larger the dot, the stronger the correlation. The color of the dots represents the p-value; the greener the color, the lower the p-value. p<0.05 was considered statistically significant. DE-PRGs differentially expressed PANoptosis-related genes.
The top 30 crucial genes related to CD were extracted from the GeneCards database, and their expression levels were compared between CD samples and normal samples (Fig.6A). We could easily conclude that a majority of the CD-related genes (26 out of 30) were differentially expressed, especially COL1A1, CTLA4, IL10 and NOD2. Pearson correlation analysis was subsequently conducted to scrutinize the relationships between these CD-related genes and the hub DE-PRGs (Fig.6B). Notably, CTLA4, one of the most differentially expressed CD-related genes, was significantly associated with each hub DE-PRG. COL1A1, IL10 and NOD2 also presented varying levels of correlation with the hub DE-PRGs. Nevertheless, there were no significant correlations between the hub DE-PRGs and some CD-related genes, including CYBB, IL10RA, RET and VCP.
Expression levels of the top 30 CD-related genes and relationships between them and hub DE-PRGs. (A) Boxplot of the top 30 crucial genes in relation to CD. The blue bars represent controls, and the red bars represent CD samples. (B) Pearson correlation analysis between the top 30 CD-related genes and the 10 hub DE-PRGs. *p<0.05; **p<0.01; ***p<0.001. CD Crohns disease, DE-PRGs differentially expressed PANoptosis-related genes.
Subsequently, a genemiRNA interaction network of the 10 hub DE-PRGs consisting of 226 nodes and 338 edges was constructed (Supplementary file 7: Fig. S5 and Supplementary file 8: Table S3). Apparently, miR-124-3p, miR-34a-5p and miR-27a-3p were most strongly associated with the hub DE-PRGs in CD. After that, we generated a geneTF regulatory network of the 10 hub DE-PRGs (Supplementary file 9: Fig. S6). The 10 hub DE-PRGs were regulated by 35 total TFs. Among them, FOXC1 was found to regulate as many as 7 hub DE-PRGs and S100A8 was regulated by 13 miRNAs (Supplementary file 10: Table S4). In addition, we looked for available drugs that act on the hub DE-PRGs, and a host of drugs were involved (Supplementary file 11: Fig. S7 and Supplementary file 12: Table S5). Specifically, a total of 19 drugs interacted with XBP1, 8 of which inhibited it.
To distinguish different PANoptosis patterns in CD patients, we adopted the NMF method for unsupervised clustering on the basis of the 10 hub DE-PRGs. At k=2, the most stable and optimal PANclusters were identified (Fig.7A). There were 101 and 178 CD samples in PANcluster A and PANcluster B, respectively. The geometrical distance between the two clusters is shown in Fig.7B, validating their gene expression heterogeneity. Thereafter, a boxplot and a heatmap were generated to compare the expression levels of the hub DE-PRGs between PANcluster A and PANcluster B (Fig.7C,D). Specifically, PANcluster A was distinguished by the considerably high expression levels of CIDEC, NDRG1, NUMA1 and RAG1, while the other hub DE-PRGs, that is, CD44, PEA15, S100A8, S100A9, TIMP1 and XBP1, were expressed at higher levels in PANcluster B.
Recognition of PANclusters in CD. (A) Unsupervised clustering matrix generated using NMF method when k=2. (B) PCA plot showing the distribution of PANcluster A and PANcluster B. The red dots represent PANcluster A and the blue dots represent PANcluster B. (C) Boxplot of the expression levels of the hub DE-PRGs in PANcluster A and PANcluster B. The red bars represent PANcluster A, and the blue bars represent PANcluster B. (D) Heatmap of the expression levels of the hub DE-PRGs in PANcluster A and PANcluster B. Each row represents one hub DE-PRG, and each column represents one CD sample. PANclusters PANoptosis patterns, CD Crohns disease, NMF nonnegative matrix factorization, PCA principal component analysis, DE-PRGs differentially expressed PANoptosis-related genes.
GSVA was performed with the aim of shedding light on the functional diversity patterns of the recognized PANclusters. With regard to Hallmark pathways, increased activity of p53 pathway, androgen response and hypoxia were detected in PANcluster A, whereas mTORC1 signaling, inflammatory response, TNF- signaling via NF-B, IL-6/JAK/STAT3 signaling and epithelial mesenchymal transition were increased in PANcluster B (Supplementary file 13: Fig. S8A). In addition, results from the KEGG analysis suggested that PANcluster A had hypoactive ECMreceptor interaction and endocytosis but expressed high levels of genes associated with cytokinecytokine receptor interaction and numerous signaling pathways, including toll-like receptor signaling pathway and NOD-like receptor signaling pathway (Supplementary file 13: Fig. S8B). Concerning the Reactome-based pathways, PANcluster A showed an increase in the cell cycle pathway, while most pathways, such as cytokine signaling in immune system and extracellular matrix-related pathways, were significantly enriched in PANcluster B (Supplementary file 13: Fig. S8C).
To clarify the disparities in the immune system among the PANclusters, we compared their immune microenvironments, as shown in Fig.8A. Remarkably, the enrichment scores of 26 immune cells were much greater in PANcluster B than in PANcluster A. Consequently, CD56bright NK cells and monocytes were the only two exceptions with higher infiltration degrees in PANcluster A, the explanations behind which demand further investigation. In addition, differential gene analysis revealed 533 DEGs, including 171 upregulated and 362 downregulated genes (Fig.8B). To learn more about the biological functions and processes linked to these DEGs, GO and KEGG analyses were performed. The 533 DEGs were markedly enriched in the following terms: positive regulation of cell adhesion, leukocyte cellcell adhesion, and extracellular matrix organization (biological process); collagen-containing extracellular matrix, secretory granule membrane, and basement membrane (cellular component); and extracellular matrix structural constituent, glycosaminoglycan binding, and integrin binding (molecular function) (Fig.8C,D). Moreover, the 533 DEGs were principally involved in many pathways, such as cell adhesion molecules, ECMreceptor interaction and PI3K-Akt signaling pathway (Fig.8E).
Characterization of different PANclusters. (A) Infiltration levels of 28 immune cell subtypes in PANclusters A and B. The red bars represent PANcluster A, and the blue bars represent PANcluster B. (B) Volcano map of DEGs between PANclusters A and B. The blue dots represent downregulated DEGs, the red dots represent upregulated DEGs, and the gray dots represent genes with no significant difference. (C,D) Enriched items in GO analysis based on the DEGs between PANclusters A and B. (E) Enriched items in KEGG analysis based on the DEGs between PANclusters A and B. Node color indicates gene expression level; quadrilateral color indicates z-score. PANclusters PANoptosis patterns, DEGs differentially expressed genes, BP biological process, CC cellular component, MF molecular function, GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes.
CD and control samples were acquired from 10 patients who were diagnosed with CD, and their demographic and clinical information is presented in Table 1. qRT-PCR was subsequently conducted to determine the relative expression levels of the 10 hub DE-PRGs (Fig.9A). As expected, the levels of CD44, PEA15, S100A8, S100A9, TIMP1 and XBP1 increased in CD samples compared with those in control samples; while the opposite trend was observed for NDRG1. Moreover, there was no significant difference in the mRNA expression levels of CIDEC, NUMA1 or RAG1. Furthermore, we established classic TNBS and DSS mouse models of CD and collected colon tissues to analyze the expression levels of the hub DE-PRGs in murine colon tissues from the TNBS, DSS and control groups (Fig.9B,C). Generally, the results of the TNBS model were in line with expectations. Specifically, in TNBS-induced colitis, Cd44, Numa1, S100a8, S100a9, Timp1 and Xbp1 were more highly expressed, while Cidec and Rag1 were less expressed. In addition, the levels of Ndrg1 and Pea15a did not significantly differ between the TNBS group and the control group. Consistent with previous work, in the DSS mouse model, the expression levels of Cd44, S100a8, S100a9 and Timp1 were greater in the mice with colitis; while the expression level of Ndrg1 was lower in the mice with colitis. In addition, no significant difference in the expression levels of Cidec, Pea15a or Xbp1 was detected. Unexpectedly, the expression levels of Numa1 and Rag1 in the DSS group were different from those in the CD and TNBS colitis groups.
qRT-PCR validation of the hub DE-PRGs in CD patients (A), TNBS-induced colitis model (B) and DSS-induced colitis model (C). The blue dots represent the normal/control tissues, and the red dots represent the diseased tissues. qRT-PCR quantitative real-time PCR, DE-PRGs differentially expressed PANoptosis-related genes, CD Crohns disease, TNBS 2,4,6-trinitrobenzene sulfonic acid, DSS dextran sodium sulfate, GAPDH glyceraldehyde-3-phosphate dehydrogenase.
Continued here:
Characterization of PANoptosis-related genes in Crohn's disease by integrated bioinformatics, machine learning and ... - Nature.com
- Why IBMs New Machine-Learning Model Is a Big Deal for Next-Generation Chips - TipRanks - January 24th, 2026 [January 24th, 2026]
- A no-compromise amplifier solution: Synergy teams up with Wampler and Friedman to launch its machine-learning power amp and promises to change the... - January 24th, 2026 [January 24th, 2026]
- Our amplifier learns your cabinets impedance through controlled sweeps and continues to monitor it in real-time: Synergys Power Amp Machine-Learning... - January 24th, 2026 [January 24th, 2026]
- Machine Learning Studied to Predict Response to Advanced Overactive Bladder Therapies - Sandip Vasavada - UroToday - January 24th, 2026 [January 24th, 2026]
- Blending Education, Machine Learning to Detect IV Fluid Contaminated CBCs, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Why its critical to move beyond overly aggregated machine-learning metrics - MIT News - January 24th, 2026 [January 24th, 2026]
- Machine Learning Lends a Helping Hand to Prosthetics - AIP Publishing LLC - January 24th, 2026 [January 24th, 2026]
- Hassan Taher Explains the Fundamentals of Machine Learning and Its Relationship to AI - mitechnews.com - January 24th, 2026 [January 24th, 2026]
- Keysight targets faster PDK development with machine learning toolkit - eeNews Europe - January 24th, 2026 [January 24th, 2026]
- Training and external validation of machine learning supervised prognostic models of upper tract urothelial cancer (UTUC) after nephroureterectomy -... - January 24th, 2026 [January 24th, 2026]
- Age matters: a narrative review and machine learning analysis on shared and separate multidimensional risk domains for early and late onset suicidal... - January 24th, 2026 [January 24th, 2026]
- Uncovering Hidden IV Fluid Contamination Through Machine Learning, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Machine learning identifies factors that may determine the age of onset of Huntington's disease - Medical Xpress - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - WEF expands Fourth Industrial Revolution Network - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- Machine-learning analysis reclassifies armed conflicts into three new archetypes - The Brighter Side of News - January 24th, 2026 [January 24th, 2026]
- Machine learning and AI the future of drought monitoring in Canada - sasktoday.ca - January 24th, 2026 [January 24th, 2026]
- Machine learning revolutionises the development of nanocomposite membranes for CO capture - European Coatings - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - Leading data infrastructure is helping power better lives in Sunderland - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- How banks are responsibly embedding machine learning and GenAI into AML surveillance - Compliance Week - January 20th, 2026 [January 20th, 2026]
- Enhancing Teaching and Learning of Vocational Skills through Machine Learning and Cognitive Training (MCT) - Amrita Vishwa Vidyapeetham - January 20th, 2026 [January 20th, 2026]
- New Research in Annals of Oncology Shows Machine Learning Revelation of Global Cancer Trend Drivers - Oncodaily - January 20th, 2026 [January 20th, 2026]
- Machine learning-assisted mapping of VT ablation targets: progress and potential - Hospital Healthcare Europe - January 20th, 2026 [January 20th, 2026]
- Machine Learning Achieves Runtime Optimisation for GEMM with Dynamic Thread Selection - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- Machine learning algorithm predicts Bitcoin price on January 31, 2026 - Finbold - January 20th, 2026 [January 20th, 2026]
- AI and Machine Learning Transform Baldness Detection and Management - Bioengineer.org - January 20th, 2026 [January 20th, 2026]
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]