CEVA Redefines High Performance AI/ML Processing for Edge AI and Edge Compute Devices with its NeuPro-M Heterogeneous and Secure Processor…
- 3rd generation NeuPro AI/ML architecture offers scalable performance of 20 to 1,200 TOPS at SoC and Chiplet levels, lowers memory bandwidth by 6X
- Targets broad use of AI/ML in automotive, industrial, 5G networks and handsets, surveillance cameras, and Edge Compute
LAS VEGAS, Jan. 6, 2022 /PRNewswire/ -- Consumer Electronics Show CEVA, Inc. (NASDAQ: CEVA), the leading licensor of wireless connectivity and smart sensing technologies and integrated IP solutions, today announced NeuPro-M, its latest generation processor architecture for artificial intelligence and machine learning (AI/ML) inference workloads. Targeting the broad markets of Edge AI and Edge Compute, NeuPro-M is a self-contained heterogeneous architecture that is composed of multiple specialized co-processors and configurable hardware accelerators that seamlessly and simultaneously process diverse workloads of Deep Neural Networks, boosting performance by 5-15X compared to its predecessor. An industry first, NeuPro-M supports both system-on-chip (SoC) as well as Heterogeneous SoC (HSoC) scalability to achieve up to 1,200 TOPS and offers optional robust secure boot and end-to-end data privacy.
NeuPro-M is the latest generation processor architecture from CEVA for artificial intelligence and machine learning (AI/ML) inference workloads. Targeting the broad markets of Edge AI and Edge Compute, NeuPro-M is a self-contained heterogeneous architecture that is composed of multiple specialized co-processors and configurable hardware accelerators that seamlessly and simultaneously process diverse workloads of Deep Neural Networks, boosting performance by 5-15X compared to its predecessor.
NeuProM compliant processors initially include the following pre-configured cores:
NPM11 single NeuPro-M engine, up to 20 TOPS at 1.25GHz
NPM18 eight NeuPro-M engines, up to 160 TOPS at 1.25GHz
Illustrating its leading-edge performance, a single NPM11 core, when processing a ResNet50 convolutional neural network, achieves a 5X performance increase and 6X memory bandwidth reduction versus its predecessor, which results in exceptional power efficiency of up to 24 TOPS per watt.
Built on the success of its' predecessors, NeuPro-M is capable of processing all known neural network architectures, as well as integrated native support for next-generation networks like transformers, 3D convolution, self-attention and all types of recurrent neural networks. NeuPro-M has been optimized to process more than 250 neural networks, more than 450 AI kernels and more than 50 algorithms. The embedded vector processing unit (VPU) ensures future proof software-based support of new neural network topologies and new advances in AI workloads. Furthermore, the CDNN offline compression tool can increase the FPS/Watt of the NeuPro-M by a factor of 5-10X for common benchmarks, with very minimal impact on accuracy.
Story continues
Ran Snir, Vice President and General Manager of the Vision Business Unit at CEVA, commented: "The artificial intelligence and machine learning processing requirements of edge AI and edge compute are growing at an incredible rate, as more and more data is generated and sensor-related software workloads continue to migrate to neural networks for better performance and efficiencies. With the power budget remaining the same for these devices, we need to find new and innovative methods of utilizing AI at the edge in these increasingly sophisticated systems. NeuPro-M is designed on the back of our extensive experience deploying AI processors and accelerators in millions of devices, from drones to security cameras, smartphones and automotive systems. Its innovative, distributed architecture and shared memory system controllers reduces bandwidth and latency to an absolute minimum and provides superb overall utilization and power efficiency. With the ability to connect multiple NeuPro-M compliant cores in a SoC or Chiplet to address the most demanding AI workloads, our customers can take their smart edge processor designs to the next level."
The NeuPro-M heterogenic architecture is composed of function-specific co-processors and load balancing mechanisms that are the main contributors to the huge leap in performance and efficiency compared to its predecessor. By distributing control functions to local controllers and implementing local memory resources in a hierarchical manner, the NeuPro-M achieves data flow flexibility that result in more than 90% utilization and protects against data starvation of the different co-processors and accelerators at any given time. The optimal load balancing is obtained by practicing various data flow schemes that are adopted to the specific network, the desired bandwidth, the available memory and the target performance, by the CDNN framework.
NeuPro-M architecture highlights include:
Main grid array consisting of 4K MACs (Multiply And Accumulates), with mixed precision of 2-16 bits
Winograd transform engine for weights and activations, reducing convolution time by 2X and allowing 8-bit convolution processing with <0.5% precision degradation
Sparsity engine to avoid operations with zero-value weights or activations per layer, for up to 4X performance gain, while reducing memory bandwidth and power consumption
Fully programmable Vector Processing Unit, for handling new unsupported neural network architectures with all data types, from 32-bit Floating Point down to 2-bit Binary Neural Networks (BNN)
Configurable Weight and Data compression down to 2-bits while storing to memory, and real-time decompression upon reading, for reduced memory bandwidth
Dynamically configured two level memory architecture to minimize power consumption attributed to data transfers to and from an external SDRAM
To illustrate the benefit of these innovative features in the NeuPro-M architecture, concurrent use of the orthogonal mechanisms of Winograd transform, Sparsity engine, and low-resolution 4x4-bit activations, delivers more than a 3X reduction in cycle count of networks such as Resnet50 and Yolo V3.
As neural network Weights and Biases and the data set and network topology become key Intellectual Property of the owner, there is a strong need to protect these from unauthorized use. The NeuPro-M architecture supports secure access in the form of optional root of trust, authentication, and cryptographic accelerators.
For the automotive market, NeuPro-M cores and its CEVA Deep Neural Network (CDNN) deep learning compiler and software toolkit comply with Automotive ISO26262 ASIL-B functional safety standard and meets the stringent quality assurance standards IATF16949 and A-Spice.
Together with CEVA's multi award-winning neural network compiler CDNN and its robust software development environment, NeuPro-M provides a fully programmable hardware/software AI development environment for customers to maximize their AI performance. CDNN includes innovative software that can fully utilize the customers' NeuPro-M customized hardware to optimize power, performance & bandwidth. The CDNN software also includes a memory manager for memory reduction and optimal load balancing algorithms, and wide support of various network formats including ONNX, Caffe, TensorFlow, TensorFlow Lite, Pytorch and more. CDNN is compatible with common open-source frameworks, including Glow, tvm, Halide and TensorFlow and includes model optimization features like 'layer fusion' and 'post training quantization' all while using precision conservation methods.
NeuPro-M is available for licensing to lead customers today and for general licensing in Q2 this year. NeuPro-M customers can also benefit from Heterogenous SoC design services from CEVA to help integrate and support system design and chiplet development. For further information, visit https://www.ceva-dsp.com/product/ceva-neupro-m/.
About CEVA, Inc.CEVA is the leading licensor of wireless connectivity and smart sensing technologies and integrated IP solutions for a smarter, safer, connected world. We provide Digital Signal Processors, AI engines, wireless platforms, cryptography cores and complementary software for sensor fusion, image enhancement, computer vision, voice input and artificial intelligence. These technologies are offered in combination with our Intrinsix IP integration services, helping our customers address their most complex and time-critical integrated circuit design projects. Leveraging our technologies and chip design skills, many of the world's leading semiconductors, system companies and OEMs create power-efficient, intelligent, secure and connected devices for a range of end markets, including mobile, consumer, automotive, robotics, industrial, aerospace & defense and IoT.
Our DSP-based solutions include platforms for 5G baseband processing in mobile, IoT and infrastructure, advanced imaging and computer vision for any camera-enabled device, audio/voice/speech and ultra-low-power always-on/sensing applications for multiple IoT markets. For sensor fusion, our Hillcrest Labs sensor processing technologies provide a broad range of sensor fusion software and inertial measurement unit ("IMU") solutions for markets including hearables, wearables, AR/VR, PC, robotics, remote controls and IoT. For wireless IoT, our platforms for Bluetooth (low energy and dual mode), Wi-Fi 4/5/6/6e (802.11n/ac/ax), Ultra-wideband (UWB), NB-IoT and GNSS are the most broadly licensed connectivity platforms in the industry.
Visit us at http://www.ceva-dsp.com and follow us on Twitter, YouTube, Facebook, LinkedIn and Instagram.
CEVA - a global leader in signal processing IP for everything smart and connected. (PRNewsFoto/CEVA, Inc.)
Cision
View original content to download multimedia:https://www.prnewswire.com/news-releases/ceva-redefines-high-performance-aiml-processing-for-edge-ai-and-edge-compute-devices-with-its-neupro-m-heterogeneous-and-secure-processor-architecture-301455262.html
SOURCE CEVA, Inc.
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]