Biological research and self-driving labs in deep space supported by artificial intelligence – Nature.com
Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 11621184 (2020).
Article Google Scholar
Loftus, D. J., Rask, J. C., McCrossin, C. G. & Tranfield, E. M. The chemical reactivity of lunar dust: from toxicity to astrobiology. Earth Moon Planets 107, 95105 (2010).
Article Google Scholar
Pohlen, M., Carroll, D., Prisk, G. K. & Sawyer, A. J. Overview of lunar dust toxicity risk. NPJ Microgravity 8, 55 (2022).
Paul, A.-L. & Ferl, R. J. The biology of low atmospheric pressureimplications for exploration mission design and advanced life support. Am. Soc. Gravit. Space Biol. 19, 317 (2005).
Council, N. R. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era (National Academies Press, 2011).
Goswami, N. et al. Maximizing information from space data resources: a case for expanding integration across research disciplines. Eur. J. Appl. Physiol. 113, 16451654 (2013).
Article Google Scholar
Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401407 (2020).
Article Google Scholar
Costes, S. V., Sanders, L. M. & Scott, R. T. Workshop on Artificial Intelligence & Modeling for Space Biology. Zenodo https://doi.org/10.5281/zenodo.7508535 (2023).
Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255260 (2015).
Article MathSciNet MATH Google Scholar
Topol, E. J. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Basic Books, 2019).
Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 4456 (2019).
Article Google Scholar
Scott, R. T. et al. Biomonitoring and precision health in deep space supported by artificial intelligence. Nat. Mach. Intell. https://doi.org/10.1038/s42256-023-00617-5 (2023).
National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Board on Research Data and Information & Committee on Toward an Open Science Enterprise Open Science by Design: Realizing a Vision for 21st Century Research (National Academies Press, 2018).
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Article Google Scholar
Berrios, D. C., Beheshti, A. & Costes, S. V. FAIRness and usability for open-access omics data systems. AMIA Annu. Symp. Proc. 2018, 232241 (2018).
Google Scholar
Low, L. A. & Giulianotti, M. A. Tissue chips in space: modeling human diseases in microgravity. Pharm. Res. 37, 8 (2019).
Article Google Scholar
Ronca, A. E., Souza, K. A. & Mains, R. C. (eds) Translational Cell and Animal Research in Space: 19652011 NASA Special Publication NASA/SP-2015-625 (NASA Ames Research Center, 2016).
Alwood, J. S. et al. From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. NPJ Microgravity 3, 5 (2017).
Schatten, H., Lewis, M. L. & Chakrabarti, A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut. 49, 399418 (2001).
Article Google Scholar
Shi, L. et al. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFB and metabolic pathways. Cell. Mol. Immunol. 18, 14891502 (2021).
Article Google Scholar
Ferl, R. J., Koh, J., Denison, F. & Paul, A.-L. Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology 15, 3256 (2015).
Article Google Scholar
Ou, X. et al. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.). Mutat. Res. 662, 4453 (2009).
Article Google Scholar
Overbey, E. G. et al. Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina. Sci. Rep. 9, 13304 (2019).
Article Google Scholar
Clment, G. & Slenzka, K. Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space (Springer Science & Business Media, 2006).
Yeung, C. K. et al. Tissue chips in space-challenges and opportunities. Clin. Transl. Sci. 13, 810 (2020).
Article Google Scholar
Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345361 (2021).
Article Google Scholar
Globus, R. K. & Morey-Holton, E. Hindlimb unloading: rodent analog for microgravity. J. Appl. Physiol. 120, 11961206 (2016).
Article Google Scholar
Simonsen, L. C., Slaba, T. C., Guida, P. & Rusek, A. NASAs first ground-based Galactic cosmic ray simulator: enabling a new era in space radiobiology research. PLoS Biol. 18, e3000669 (2020).
Article Google Scholar
Buckey, J. C. Jr & Homick, J. L. The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission. NASA Technical Reports Server (NASA, 2003).
Diallo, O. N. et al. Impact of the International Space Station Research Results. NASA Technical Reports Server (NASA, 2019).
Vandenbrink, J. P. & Kiss, J. Z. Space, the final frontier: a critical review of recent experiments performed in microgravity. Plant Sci. 243, 115119 (2016).
Article Google Scholar
Massaro Tieze, S., Liddell, L. C., Santa Maria, S. R. & Bhattacharya, S. BioSentinel: a biological CubeSat for deep space exploration. Astrobiology https://doi.org/10.1089/ast.2019.2068 (2020).
Ricco, A. J., Maria, S. R. S., Hanel, R. P. & Bhattacharya, S. BioSentinel: a 6U nanosatellite for deep-space biological science. IEEE Aerospace Electron. Syst. Mag. 35, 618 (2020).
Article Google Scholar
Chen, Y. et al. Automated cells-to-peptides sample preparation workflow for high-throughput, quantitative proteomic assays of microbes. J. Proteome Res. 18, 37523761 (2019).
Article Google Scholar
Zampieri, M., Sekar, K., Zamboni, N. & Sauer, U. Frontiers of high-throughput metabolomics. Curr. Opin. Chem. Biol. 36, 1523 (2017).
Article Google Scholar
Stephens, Z. D. et al. Big data: astronomical or genomical? PLoS Biol. 13, e1002195 (2015).
Article Google Scholar
Tomczak, K., Czerwiska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19, A68A77 (2015).
Google Scholar
Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580585 (2013).
Article Google Scholar
Atta, L. & Fan, J. Computational challenges and opportunities in spatially resolved transcriptomic data analysis. Nat. Commun. 12, 5283 (2021).
Article Google Scholar
Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 914 (2021).
Article Google Scholar
Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518524 (2016).
Article Google Scholar
Mardis, E. R. DNA sequencing technologies: 20062016. Nat. Protoc. 12, 213218 (2017).
Article Google Scholar
Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257272 (2019).
Article Google Scholar
Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 16471660.e19 (2019).
Article Google Scholar
Giacomello, S. et al. Spatially resolved transcriptome profiling in model plant species. Nat Plants 3, 17061 (2017).
Article Google Scholar
Mao, X. W. et al. Characterization of mouse ocular response to a 35-day spaceflight mission: evidence of blood-retinal barrier disruption and ocular adaptations. Sci. Rep. 9, 8215 (2019).
Article Google Scholar
Jonscher, K. R. et al. Spaceflight activates lipotoxic pathways in mouse liver. PLoS ONE 11, e0152877 (2016).
Article Google Scholar
Beheshti, A. et al. Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver. Sci. Rep. 9, 19195 (2019).
Article Google Scholar
Malkani, S. et al. Circulating miRNA spaceflight signature reveals targets for countermeasure development. Cell Rep. 33, 108448 (2020).
Article Google Scholar
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 11851201.e20 (2020).
Article Google Scholar
Jiang, P., Green, S. J., Chlipala, G. E., Turek, F. W. & Vitaterna, M. H. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 7, 113 (2019).
Article Google Scholar
Beisel, N. S., Noble, J., Barbazuk, W. B., Paul, A.-L. & Ferl, R. J. Spaceflight-induced alternative splicing during seedling development in Arabidopsis thaliana. NPJ Microgravity 5, 9 (2019).
Polo, S.-H. L. et al. RNAseq analysis of rodent spaceflight experiments is confounded by sample collection techniques. iScience 23, 101733 (2020).
Article Google Scholar
Choi, S., Ray, H. E., Lai, S.-H., Alwood, J. S. & Globus, R. K. Preservation of multiple mammalian tissues to maximize science return from ground based and spaceflight experiments. PLoS ONE 11, e0167391 (2016).
Article Google Scholar
Krishnamurthy, A., Ferl, R. J. & Paul, A.-L. Comparing RNA-seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. Appl. Plant Sci. 6, e01197 (2018).
Article Google Scholar
Vrana, J. et al. Aquarium: open-source laboratory software for design, execution and data management. Synth. Biol. 6, ysab006 (2021).
Article Google Scholar
Miles, B. & Lee, P. L. Achieving reproducibility and closed-loop automation in biological experimentation with an IoT-enabled lab of the future. SLAS Technol. 23, 432439 (2018).
Article Google Scholar
Read the original:
Biological research and self-driving labs in deep space supported by artificial intelligence - Nature.com
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]