Benchmarking machine learning and parametric methods for genomic prediction of feed efficiency-related traits in … – Nature.com
The FE-related traits and genomic information were obtained for 1,156 animals from an experimental breeding program at the Beef Cattle Research Center (Institute of Animal Science IZ).
Animals were from an experimental breeding program at the Beef Cattle Research Center at the Institute of Animal Science (IZ) in Sertozinho, So Paulo, Brazil. Since the 1980s, the experimental station has maintained three selection herds: Nellore control (NeC) with animals selected for yearling body weight (YBW) with a selection differential close to zero, within birth year and herd, while Nellore Selection (NeS) and Nellore Traditional (NeT) animals are selected for the YBW with a maximum selection differential, also within birth year and herd25. In the NeT herd, sires from commercial herds or NeS eventually were used in the breeding season, while the NeC and NeS were closed herds (only sires from the same herd were used in the breeding season), with controlled inbreeding rate by planned matings. In addition, the NeT herd has been selected for lower residual feed intake (RFI) since 2013. In the three herds, the animal selection is based on YBW measured at 378days of age in young bulls.
The FE-related traits were evaluated on 1156 animals born between 2004 and 2015 in a feeding efficiency trial, in which they were either housed in individual pens (683 animals) or group pens equipped with the GrowSafe feeding system (473 animals), with animals grouped by sex. From those, 146 animals were from the NeC herd (104 young bulls and 42 heifers), 300 from the NeS herd (214 young bulls and 86 heifers), and 710 from the NeT herd (483 young bulls and 227 heifers). Both feeding trials comprised at least 21 days for adaptation to the feedlot diet and management and at least 56 days for the data collection period. The young bull and heifers showed an average age at the end of the feeding trial was 36627.5 and 38445.4 days, respectively.
A total of 780 animals were genotyped with the Illumina BovineHD BeadChip assay (770k, Illumina Inc., San Diego, CA, USA), while 376 animals were genotyped with the GeneSeek Genomic Profiler (GGP Indicus HD, 77K). The animals genotyped with the GGP chip were imputed to the HD panel using FImpute v.326 with an expected accuracy higher than 0.97. Autosomal SNP markers with a minor allele frequency (MAF) lower than 0.10 and a significant deviation from HardyWeinberg equilibrium (P105) were removed, and markers and samples with call rate lower than 0.95 were also removed. An MAF lower than 10% was used to remove genetic markers with lower significance and noise information in a stratified population. After this quality control procedure, genotypes from 1,024 animals and 305,128 SNP markers remained for GS analyses. Population substructure was evaluated using a principal component analysis (PCA) based on the genomic relationship matrix using the ade4 R package (Supplementary Figure S1)27.
Animals were weighed without fasting at the beginning and end of the feeding trial, as well as every 14 days during the experimental period. The mixed ration (dry corn grain, corn silage, soybean, urea, and mineral salt) was offered ad libitum and formulated with 67% of total digestible nutrients (TDN) and 13% of crude protein (CP), aiming for an average daily gain (ADG) of 1.1kg.
The following feed efficiency-related traits were evaluated: ADG, dry matter intake (DMI), feed efficiency (FE), and RFI. In the individual pens, the orts were weighed daily in the morning before the feed delivery to calculate the daily dietary intake. In the group pens, the GrowSafe feeding system automatically recorded the feed intake. Thus, the DMI (expressed as kg/day) was estimated as the feed intake by each animal with subsequent adjustments for dry matter content. ADG was estimated as the slope of the linear regression of body weight (BW) on feeding trial days, and the FE was expressed as the ratio of ADG and DMI. Finally, RFI was calculated within each contemporary group (CG), as the difference between the observed and expected feed intake considering the average metabolic body weight (MBW) and ADG of each animal (Koch et al., 1963) as follows:
$$DMI=CG+ {beta }_{0}+{beta }_{1}ADG+{beta }_{2}MBW+varepsilon$$
where ({beta }_{0}) is the model intercept, ({beta }_{1}) and ({beta }_{2}) are the linear regression coefficients for (ADG) and ({MBW=BW}^{0.75}), respectively, and (varepsilon) is the residual of the equation representing the RFI estimate.
The contemporary groups (CG) were defined by sex, year of birth, type of feed trial pen (individual or collective) and selection herd. Phenotypic observations with values outside the interval of3.5 standard deviations below and above the mean of each CG for each trait were excluded, and the number of animals per CG ranged from 10 to 70.
The (co)variance components and heritability for FE-related traits were estimated considering a multi-trait GBLUP (MTGBLUP) as follows:
$$mathbf{y}=mathbf{X}{varvec{upbeta}}+mathbf{Z}mathbf{a}+mathbf{e},$$
Where ({varvec{y}}) is the matrix of phenotypic FE-related traits (ADG, FE, DMI, and RFI) of dimension Nx4 (N individuals andfour traits); ({varvec{upbeta}}) is the vector of fixed effects, linear and quadratic effects of cow age, and linear effect of animals age at the beginning of the test; (mathbf{a}) is the vector of additive genetic effects (breeding values) of animal, and (mathbf{e}) is a vector with the residual terms. The (mathbf{X}) and (mathbf{Z}) are the incidence matrices related to fixed (b) and random effects (a), respectively. It was assumed that the random effects of animals and residuals were normally distributed, as (mathbf{a}sim {text{N}}(0,mathbf{G}otimes {mathbf{S}}_{mathbf{a}})) and (mathbf{e}sim {text{N}}(0,mathbf{I}otimes {mathbf{S}}_{mathbf{e}})), where (mathbf{G}) is the additive genomic relationship matrix between genotyped individuals according to VanRaden28, (mathbf{I}) is an identity matrix,is the Kronecker product, and ({mathbf{S}}_{mathbf{a}}=left[begin{array}{ccc}{upsigma }_{{text{a}}1}^{2}& cdots & {upsigma }_{mathrm{a1,4}}\ vdots & ddots & vdots \ {upsigma }_{mathrm{a1,4}}& cdots & {upsigma }_{{text{a}}4}^{2}end{array}right]) and ({mathbf{S}}_{mathbf{e}}=left[begin{array}{ccc}{upsigma }_{{text{e}}1}^{2}& cdots & {upsigma }_{mathrm{e1,4}}\ vdots & ddots & vdots \ {upsigma }_{mathrm{e1,4}}& cdots & {upsigma }_{{text{e}}4}^{2}end{array}right]) are the additive genetic and residual (co)variance matrices, respectively. The G matrix was obtained according to VanRaden28: (mathbf{G}=frac{mathbf{M}{mathbf{M}}^{mathbf{^{prime}}}}{2sum_{{text{j}}=1}^{{text{m}}}{{text{p}}}_{{text{j}}}left(1-{{text{p}}}_{{text{j}}}right)}) where (mathbf{M}) is the SNP marker matrix with codes 0, 1, and 2 for genotypes AA, AB, and BB adjusted for allele frequency expressed as (2{{text{p}}}_{{text{j}}}), and ({{text{p}}}_{{text{j}}}) is the frequency of the second allele jth SNP marker.
The analyses were performed using the restricted maximum likelihood (REML) method through airemlf90 software29. The predictf90 software29 was used to obtain the phenotypes adjusted for the fixed effects and covariates (({{text{y}}}^{*}={text{y}}-{text{X}}widehat{upbeta })). The adjusted phenotypes were used as the response variable in the genomic predictions.
Tthe GEBVs accuracy (({{text{Acc}}}_{{text{GEBV}}})) in the whole population, was calculated based on prediction error variance (PEV) and the genetic variance for each FE-related trait (({upsigma }_{{text{a}}}^{2})) using the following equation30: ({text{Acc}}=1-sqrt{{text{PEV}}/{upsigma }_{{text{a}}}^{2}}) .
A forward validation scheme was applied for computing the prediction accuracies using machine learning and parametric methods, splitting the dataset based on year of birth, with animals born between 2004 and 2013 assigned as the reference population (n=836) and those born in 2014 and 2015 (n=188) as the validation set. For ML approaches, we randomly split the training dataset into fivefold to train the models.
Genomic prediction for FE-related traits considering the STGBLUP can be described as follows:
$${mathbf{y}}^{mathbf{*}}={varvec{upmu}}+mathbf{Z}mathbf{a}+mathbf{e}$$
where ({mathbf{y}}^{mathbf{*}}) is the Nx1 vector of adjusted phenotypic values for FE-related traits, (upmu) is the model intercept, (mathbf{Z}) is the incidence connecting observations; (mathbf{a}) is the vector of predicted values, assumed to follow a normal distribution given by ({text{N}}(0,{mathbf{G}}sigma_{a}^{2})) and (mathbf{e}) is the Nx1 vector of residual values considered normally distributed as ({text{N}}(0,mathbf{I}{upsigma }_{{text{e}}}^{2})), in which I is an identity matrix, ({upsigma }_{{text{e}}}^{2}) is the residual variance. The STGBLUP model was performed using blupf90+software29.
Genomic prediction for FE-related traits considering MTGBLUP can be described as follows:
$${mathbf{y}}^{mathbf{*}}={varvec{upmu}}+mathbf{Z}mathbf{a}+mathbf{e}$$
where ({mathbf{y}}^{mathbf{*}}) is the matrix of adjusted phenotypes of dimension Nx4, (upmu) is the trait-specific intercept vector, (mathbf{Z}) is the incidence matrix for the random effect; (mathbf{a}) is an Nx4 matrix of predicted values, assumed to follow a normal distribution given by ({text{MVN}}(0,{mathbf{G}} otimes {mathbf{S}}_{{mathbf{a}}})) where ({mathbf{S}}_{mathbf{a}}) represents genetic (co)variance matrix for the FE-related traits (44). The residual effects (e) were considered normally distributed as ({text{MVN}}(0,mathbf{I}otimes {mathbf{S}}_{mathbf{e}})) in which I is an identity matrix, and ({mathbf{S}}_{mathbf{e}}) is the residual (co)variance matrix for FE-related traits (44). The MTGBLUP was implemented in the BGLR R package14 considering a Bayesian GBLUP with a multivariate Gaussian model with an unstructured (co)variance matrix between traits (({mathbf{S}}_{mathbf{a}})) using Gibbs sampling with 200,000 iterations, including 20,000 samples as burn-in and thinning interval of 5 cycles. Convergence was checked by visual inspection of trace plots and distribution plots of the residual variance.
Five Bayesian regression models with different priors were used for GS analyses: Bayesian ridge regression (BRR), Bayesian Lasso (BL), BayesA, BayesB, and BayesC. The Bayesian algorithms for GS were implemented using the R package BGLR version 1.0914. The BGLR default priors were used for all models, with 5 degrees of freedom (dfu), a scale parameter (S), and . The Bayesian analyses were performed considering Gibbs sampling chains of 200,000 iterations, with the first 20,000 iterations excluded as burn-in and a sampling interval of 5 cycles. Convergence was checked by visual inspection of trace plots and distribution plots of the residual variance. For Bayesian regression methods, the general model can be described as follows:
$${mathbf{y}}^{mathbf{*}}=upmu +sum_{{text{w}}=1}^{{text{p}}}{{text{x}}}_{{text{iw}}}{{text{u}}}_{{text{w}}}+{{text{e}}}_{{text{i}}}$$
where (upmu) is the model intercept; ({{text{x}}}_{{text{iw}}}) is the genotype of the ith animal at locus w (coded as 0, 1, and 2); ({{text{u}}}_{{text{w}}}) is the SNP marker effect (additive) of the w-th SNP (p=305,128); and ({{text{e}}}_{{text{i}}}) is the residual effect associated with the observation of ith animal, assumed to be normally distributed as (mathbf{e}sim {text{N}}(0,{mathbf{I}upsigma }_{{text{e}}}^{2})).
The BRR method14 assumes a Gaussian prior distribution for the SNP markers (({{text{u}}}_{{text{w}}})), with a common variance ({(upsigma }_{{text{u}}}^{2})) across markers so that ({text{p}}left({{text{u}}}_{1},dots ,{{text{u}}}_{{text{w}}}|{upsigma }_{{text{u}}}^{2}right)=prod_{{text{w}}=1}^{{text{p}}}{text{N}}({{text{u}}}_{{text{w}}}{|0,upsigma }_{{text{u}}}^{2})). The variance of SNP marker effects is assigned a scaled-inverse Chi-squared distribution [({text{p}})(({upsigma }_{{text{u}}}^{2})={upchi }^{-2}({upsigma }_{{text{u}}}^{2}|{{text{df}}}_{{text{u}}},{{text{S}}}_{{text{u}}}))], and the residual variance is also assigned a scaled-inverse Chi-squared distribution with degrees of freedom (dfe)and scale parameters (Se).
Bayesian Lasso (BL) regression31 used an idea from Tibshirani32 to connect the LASSO (least absolute shrinkage and selection operator) method with the Bayesian analysis. In the BL, the source of variation is split intoresidual term(({upsigma }_{{text{e}}}^{2}))and variation due to SNP markers (({upsigma }_{{{text{u}}}_{{text{w}}}}^{2})). The prior distribution for the additive effect of the SNP marker (left[{text{p}}left({{text{u}}}_{{text{w}}}|{uptau }_{{text{j}}}^{2},{upsigma }_{{text{e}}}^{2}right)right]) follows a Gaussian distribution with marker-specific prior variance given by ({text{p}}left({{text{u}}}_{{text{w}}}|{uptau }_{{text{j}}}^{2},{upsigma }_{{text{e}}}^{2}right)=prod_{{text{w}}=1}^{{text{p}}}{text{N}}({{text{u}}}_{{text{w}}}left|0,{uptau }_{{text{j}}}^{2}{upsigma }_{{text{e}}}^{2}right)). This prior distribution leads to marker-specific shrinkage of their effect, whose their extent depends on the variance parameters (left({uptau }_{{text{j}}}^{2}right)). The variance parameters (left({uptau }_{{text{j}}}^{2}right)) is assigned as exponential independent and identically distributed prior,({text{p}}left( {{uptau }_{{text{j}}}^{2} left| {uplambda } right.} right) = mathop prod limits_{{{text{j}} = 1}}^{{text{p}}} {text{Exp}}left( {{uptau }_{{text{j}}}^{2} left| {{uplambda }^{2} } right.} right)) and the square lambda regularization parameter (({uplambda }^{2})) follows a Gamma distribution (({text{p}}left({uplambda }^{2}right)={text{Gamma}}({text{r}},uptheta ))), where r and (uptheta) are the rate and shape parameters, respectively31. Thus, the marginal prior for SNP markers is given by a double exponential (DE) distribution as follows: ({text{p}}left( {{text{u}}_{{text{w}}} left| {uplambda } right.} right) = int {{text{N}}left( {{text{u}}_{{text{w}}} left| {0,{uptau }_{{text{j}}}^{2} ,{upsigma }_{{text{e}}}^{2} } right.} right){text{Exp}}left( {{uptau }_{{text{j}}}^{2} left| {{uplambda }^{2} } right.} right)}), where the DE distribution places a higher density at zero and thicker tails, inducing stronger shrinkage of estimates for markers with relatively small effect and less shrinkage for markers with substantial effect. The residual variance (({upsigma }_{{text{e}}}^{2})) is specified as a scaled inverse chi-squared prior density, with degrees of freedom dfe and scale parameter Se.
BayesA method14,33 considers Gaussian distribution with null mean as prior for SNP marker effects (({{text{u}}}_{{text{w}}})), and a SNP marker-specific variance (({upsigma }_{{text{w}}}^{2})). The variance associated with each marker effect assumes a scaled inverse chi-square prior distribution, ({text{p}}left({upsigma }_{{text{w}}}^{2}right)={upchi }^{-2}left({upsigma }_{{text{w}}}^{2}|{{text{df}}}_{{text{u}}},{{text{S}}}_{{text{u}}}^{2}right)), with degrees of freedom (({{text{df}}}_{{text{u}}})) and scale parameter (({{text{S}}}_{{text{u}}}^{2})) treated as known14. Thus, BayesA places a t-distribution for the markers effects, i.e., ({text{p}}left({{text{u}}}_{{text{w}}}|{{text{df}}}_{{text{u}}},{{text{S}}}^{2}right)={text{t}}left(0,{{text{df}}}_{{text{u}}},{{text{S}}}_{{text{u}}}^{2}right)), providing a thicker-tail distribution compared to the Gaussian, allowing a higher probability of moderate to large SNP effects.
BayesB assumes that a known proportion of SNP markers have a null effect (i.e., a point of mass at zero), and a subset of markers with a non-null effect that follow univariate t-distributions3,12, as follows:
$${text{p}}left({{text{u}}}_{{text{w}}}|{text{df}},uppi ,{{text{df}}}_{{text{u}}},{S}_{B}^{2}right)=left{begin{array}{cc}0& mathrm{with probability pi }\ {text{t}}left({{text{u}}}_{{text{w}}}|{{text{df}}}_{{text{u}}},{S}_{B}^{2}right)& mathrm{with probability }left(1-uppi right)end{array}right.$$
where (uppi) is the proportion of SNP markers with null effect, and (1-uppi) is the probability of SNP markers with non-null effect contributing to the variability of the FE-related trait3. Thus, the prior distribution assigned to SNP with non-null effects is a scaled inverse chi-square distribution.
BayesC method34 assumes a spikeslab prior for marker effects, which refers to a mixture distribution comprising a fixed amount with probability (uppi) of SNP markers have a null effect, whereas a probability of 1 of markers have effects sampled from a normal distribution. The prior distribution is as follows:
$${text{p}}left({{text{u}}}_{{text{w}}},{upsigma }_{{text{w}}}^{2},uppi right)=left{prod_{{text{j}}=1}^{{text{w}}}left[uppi left({{text{u}}}_{{text{w}}}=0right)+left(1-uppi right){text{N}}(0,{upsigma }_{{text{w}}}^{2})right]*{upchi }^{-2}left({upsigma }_{{text{w}}}^{2}|{{{text{df}}}_{{text{u}}},mathrm{ S}}_{{text{B}}}^{2}right)*upbeta (uppi |{{text{p}}}_{0},{uppi }_{0}right},$$
Where ({upsigma }_{{text{w}}}^{2}) is the common variance for marker effect, ({{text{df}}}_{{text{u}}}) and ({{text{S}}}_{{text{B}}}^{2}) are the degrees of freedom and scale parameter, respectively, ({{text{p}}}_{0}) and ({uppi }_{0})[0,1] are the prior shape parameters of the beta distribution.
Two machine learning (ML) algorithms were applied for genomic prediction: Multi-layer Neural Network (MLNN) and support vector regression (SVR). The ML approaches were used to alleviate the standard assumption adopted in the linear methods, which restrict to additive genetic effects of markers without considering more complex gene action modes. Thus, ML methods are expected to improve predictive accuracy for different target traits. To identify the best combination of hyperparameters (i.e., parameters that must be tuned to control the learning process to obtain a model with optimal performance) in the supervised ML algorithms (MLNN and SVR), we performed a random grid search by splitting the reference population from the forward scheme into five-folds35.
In MLNN, handling a large genomic dataset, such as 305,128 SNPs, is difficult due to the large number of parameters that need to be estimated, leading to a significant increase in computational demand36. Therefore, an SNP pre-selection strategy based on GWAS results in the training population using an MTGBLUP method (Fig.1A) was used to reduce the number of markers to be considered as input on the MLNN. In addition, this strategy can remove noise information in the genomic data set. In this study, the traits displayed major regions explaining a large percentage of genetic variance, which makes using pre-selected markers useful37.
(A) Manhattan plot for percentage of genetic variance explained by SNP-marker estimated through multi-trait GWAS in training population to be used as pre-selection strategies for multi-layer neural network. (B) General representation of neural networks with two hidden layers used to model nonlinear dependencies between trait and SNP marker information. The input layer ((X={x}_{i,p})) considered in the neural network refers to the SNP marker information (coded as 0, 1, and 2) of the ith animal. The selected node represents the initial weight ((W={w}_{p})), assigned as random values between -0.5 and 0.5, connecting each input node to the first hidden layer and in the second layer the ({w}_{up}) refers to the output weight from the first hidden layer, b represents the bias which helps to control the values in the activation function. The output ((widehat{y})) layer represents a weighted sum of the input features mapped in the second layer.
The MLNN model can be described as a two-step regression38. The MLNN approach consists of three different layer types: input layer, hidden layer, and output layer. The input layer receives the input data, i.e., SNP markers. The hidden layer contains mapping processing units, commonly called neurons, where each neuron in the hidden layer computes a non-linear function (activation) of the weighted sum of nodes on the previous layer. Finally, the output layer provides the outcomes of the MLNN. Our proposed MLNN architecture comprises two fully connected hidden layers schematically represented in Fig.1B. The input layer in MLNN considered SNP markers that explained more than 0.125% of the genetic variance for FE-related traits (Fig.1A;~15k for ADG and DMI, and~16k for FE and RFI). The input covariate (X={{x}_{p}}) contains pre-selected SNP markers (p) with a dimension Nxp (N individuals and p markers). The pre-selected SNP markers are combined with each k neuron (with k=1, , Nr) through the weight vector ((W)) in the hidden layer and then summed with a neuron-specific bias (({b}_{k})) for computing the linear score for the neuron k as:({Z}_{i}^{[1]}=f({{b}_{k}}^{[1]}+X{W}^{[1]})) (Fig.1B). Subsequently, this linear score transformed using an activation function (fleft(.right)) to map k neuron-specific scores and produce the first hidden layer output ((fleft({z}_{1,i}right))). In the second-hidden layer, each neuron k receives a net input coming from hidden layer 1 as: ({Z}_{i}^{[2]}={{b}_{k}}^{left[2right]}+{Z}_{i}^{[1]}{W}^{[2]}), where ({W}^{[2]}) represents the weight matrix of dimension k x k (knumber of neurons) connecting the ({Z}_{i}^{[1]}) into the second hidden layer, and ({{b}_{k}}^{left[2right]}) is a bias term in hidden layer 2. Then, the activation function is applied to map the kth hidden neuron unit in the second hidden layer and generate the output layer as ({V}_{2,i}=fleft({z}_{2,i}right)). In the MLNN, a hyperbolic tangent activation function (({text{tanh}}left({text{x}}right)={{text{e}}}^{{text{x}}}-{{text{e}}}^{-{text{x}}}/{{text{e}}}^{{text{x}}}+{{text{e}}}^{-{text{x}}})) was adopted in the first and second layers, providing greater flexibility in the MLNN39.
The prediction of the adjusted FE-related trait was obtained as follows38:
$${mathbf{y}}^{mathbf{*}}=mathbf{f}left(mathbf{b}+{mathbf{V}}_{2,mathbf{i}}{mathbf{W}}_{0}right)+mathbf{e}$$
where ({mathbf{y}}^{mathbf{*}}) represents the target adjusted feed efficiency-related trait for the ith animal; (k) the number of neurons considered in the model and assumed the same in the first and second layer; ({mathbf{W}}_{0}) represents the weight from the k neuron in layer 2, (mathbf{b}) is related to the bias parameter. The optimal weights used in MLNN were obtained by minimizing the mean square error of prediction in the training subset40.
The MLNN model was implemented using the R package h2o (https://github.com/h2oai/h2o-3), with the random grid search using the h2o.grid function (https://cran.r-project.org/web/packages/h2o) to determine the number of neurons to maximize the prediction accuracy. We used the training population split into fivefold to assess the best neural network architecture and then apply it in the disjoint validation set41,42. We considered a total of 1000 epochs36, numbers of neurons ranging from 50 to 2500 with intervals of 100, and applied a dropout ratio of 0.2 and regularization L1 and L2 parameters as 0.0015 and 0.0005, respectively. In this framework, the MLNN was performed using two hidden layers of neural networks with the number of neurons (k) of 750 for ADG, 1035 for DMI, 710 for FE, and 935 for RFI obtained during the training process.
Support vector regression (SVR) is a kernel-based supervised learning technique used for regression analysis43. In the context of GS, the SVR uses linear models to implement nonlinear regression by mapping the predictor variables (i.e., SNP marker) in the feature space using different kernel functions (linear, polynomial, or radial basis function) to predict the target information, e.g., adjusted phenotype the GS44. SVR can map linear or nonlinear relationships between phenotypes and SNP markers depending on the kernel function. The best kernel function mapping genotype to phenotype (linear, polynomial, and radial basis) was determined using the training subset split into fivefold. The radial basis function (RBF) was chosen as it outperformed the linear and polynomial (degree equal 2) kernels in the training process, increasing 8.25% in predictive ability and showing the lowest MSE.
The general model for SVR using a RBF function can be described as38,45: ({mathbf{y}}_{mathbf{i}}^{mathbf{*}}=mathbf{b}+mathbf{h}{left(mathbf{m}right)}^{mathbf{T}}mathbf{w}+mathbf{e}), where (mathbf{h}{left(mathbf{m}right)}^{mathbf{T}}) represents the kernel radial basis function used to transform the original predictor variables, i.e. SNP marker information (({text{m}})), (b) denotes the model bias, and (w) represents the unknown regression weight vector. In the SVR, the learn function (mathbf{h}{left(mathbf{m}right)}^{mathbf{T}}) was given by minimizing the loss function. The SVR was fitted using an epsilon-support vector regression that ignores residual absolute value ((left|{y}_{i}^{*}-{widehat{y}}_{i}^{*}right|)) smaller than some constant () and penalize larger residuals46.
The kernel RBF function considered in the SVR follows the form: (mathbf{h}{left(mathbf{m}right)}^{mathbf{T}}=mathbf{exp}left(-{varvec{upgamma}}{Vert {mathbf{m}}_{mathbf{i}}-{mathbf{m}}_{mathbf{j}}Vert }^{2}right)), where the ({varvec{upgamma}}) is a gamma parameter to quantity the shapes of the kernel functions, (m)and({m}_{i}) are the vectors of predictor variables for labels i and j. The main parameters in SVR are the cost parameter (({text{C}})), gamma parameter (({varvec{upgamma}})), and epsilon ((upepsilon)). The parameters ({text{C}}) and (upepsilon) were defined using the training data set information as proposed by Cherkasky and Ma47: ({text{C}}={text{max}}left(left|overline{{{text{y}} }^{*}}+3{upsigma }_{{{text{y}}}^{*}}right|,left|overline{{{text{y}} }^{*}}-3{upsigma }_{{{text{y}}}^{*}}right|right)) and (upepsilon =3{upsigma }_{{{text{y}}}^{*}}left(sqrt{{text{ln}}left({text{n}}right)/{text{n}}}right)), in which the (overline{{{text{y}} }^{*}}) and ({upsigma }_{{{text{y}}}^{*}}) are the mean and the standard deviation of the adjusted FE-related traits on the training population, and n represents the number of animals in the training set. The gamma () was determined through a random search of values varying from 0 to 5, using the training folder split into fivefold. The better-trained SVR model considered the parameter of 2.097 for ADG, 0.3847 for DMI, 0.225 for FE, and 1.075 for RFI. The SVR was implemented using the e1071 R package48.
Prediction accuracy (acc) of the different statistical approaches was assessed by Pearsons correlation between adjusted phenotypes (({{text{y}}}^{*})) and their predicted values (({widehat{{text{y}}}}_{{text{i}}}^{*})) on the validation set, and root mean squared error (RMSE). The prediction bias was assessed using the slope of the linear regression of ({widehat{y}}_{i}^{*}) on ({{text{y}}}^{*}), for each model. The Hotelling-Williams test49 was used to assess the significance level of the difference in the predictive ability of Bayesian methods (BayesA, BayesB, BayesC, BL, and BRR), MTGBLUP, and machine learning (MLNN and SVR) against STGBLUP. The similarity between the predictive performance of the different models was assessed using Wards hierarchical clustering method with an Euclidian distance analysis. The relative difference (RD) in the predictive ability was measured as ({text{RD}}=frac{({{text{r}}}_{{text{m}}}-{{text{r}}}_{{text{STGBLUP}}})}{{{text{r}}}_{{text{STGBLUP}}}}times 100), where ({{text{r}}}_{{text{m}}}) represents the acc of each alternative approach (SVR, MLNN, and MTGBLUP, or Bayesian regression modelsBayesA, BayesB, BayesC, BL, and BRR), and ({{text{r}}}_{{text{STGBLUP}}}) is the predictive ability obtained using the STGBLUP method.
The animal procedures and data sampling presented in this study were approved and performed following the Animal Care and Ethical Committee recommendations of the So Paulo State University (UNESP), School of Agricultural and Veterinary Science (protocol number 18.340/16).
Read this article:
Benchmarking machine learning and parametric methods for genomic prediction of feed efficiency-related traits in ... - Nature.com
- Modeling visual perception of Chinese classical private gardens with image parsing and interpretable machine learning - Nature - February 16th, 2026 [February 16th, 2026]
- Analysis of Market Segments and Major Growth Areas in the Machine Learning (ML) Feature Lineage Tools Market - openPR.com - February 16th, 2026 [February 16th, 2026]
- Apple Makes One Of Its Largest Ever Acquisitions, Buys The Israeli Machine Learning Firm, Q.ai - Wccftech - February 1st, 2026 [February 1st, 2026]
- Keysights Machine Learning Toolkit to Speed Device Modeling and PDK Dev - All About Circuits - February 1st, 2026 [February 1st, 2026]
- University of Missouri Study: AI/Machine Learning Improves Cardiac Risk Prediction Accuracy - Quantum Zeitgeist - February 1st, 2026 [February 1st, 2026]
- How AI and Machine Learning Are Transforming Mobile Banking Apps - vocal.media - February 1st, 2026 [February 1st, 2026]
- Machine Learning in Production? What This Really Means - Towards Data Science - January 28th, 2026 [January 28th, 2026]
- Best Machine Learning Stocks of 2026 and How to Invest in Them - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Machine learning-based prediction of mortality risk from air pollution-induced acute coronary syndrome in the Western Pacific region - Nature - January 28th, 2026 [January 28th, 2026]
- Machine Learning Predicts the Strength of Carbonated Recycled Concrete - AZoBuild - January 28th, 2026 [January 28th, 2026]
- Vertiv Next Predict is a new AI-powered, managed service that combines field expertise and advanced machine learning algorithms to anticipate issues... - January 28th, 2026 [January 28th, 2026]
- Machine Learning in Network Security: The 2026 Firewall Shift - openPR.com - January 28th, 2026 [January 28th, 2026]
- Why IBMs New Machine-Learning Model Is a Big Deal for Next-Generation Chips - TipRanks - January 24th, 2026 [January 24th, 2026]
- A no-compromise amplifier solution: Synergy teams up with Wampler and Friedman to launch its machine-learning power amp and promises to change the... - January 24th, 2026 [January 24th, 2026]
- Our amplifier learns your cabinets impedance through controlled sweeps and continues to monitor it in real-time: Synergys Power Amp Machine-Learning... - January 24th, 2026 [January 24th, 2026]
- Machine Learning Studied to Predict Response to Advanced Overactive Bladder Therapies - Sandip Vasavada - UroToday - January 24th, 2026 [January 24th, 2026]
- Blending Education, Machine Learning to Detect IV Fluid Contaminated CBCs, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Why its critical to move beyond overly aggregated machine-learning metrics - MIT News - January 24th, 2026 [January 24th, 2026]
- Machine Learning Lends a Helping Hand to Prosthetics - AIP Publishing LLC - January 24th, 2026 [January 24th, 2026]
- Hassan Taher Explains the Fundamentals of Machine Learning and Its Relationship to AI - mitechnews.com - January 24th, 2026 [January 24th, 2026]
- Keysight targets faster PDK development with machine learning toolkit - eeNews Europe - January 24th, 2026 [January 24th, 2026]
- Training and external validation of machine learning supervised prognostic models of upper tract urothelial cancer (UTUC) after nephroureterectomy -... - January 24th, 2026 [January 24th, 2026]
- Age matters: a narrative review and machine learning analysis on shared and separate multidimensional risk domains for early and late onset suicidal... - January 24th, 2026 [January 24th, 2026]
- Uncovering Hidden IV Fluid Contamination Through Machine Learning, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Machine learning identifies factors that may determine the age of onset of Huntington's disease - Medical Xpress - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - WEF expands Fourth Industrial Revolution Network - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- Machine-learning analysis reclassifies armed conflicts into three new archetypes - The Brighter Side of News - January 24th, 2026 [January 24th, 2026]
- Machine learning and AI the future of drought monitoring in Canada - sasktoday.ca - January 24th, 2026 [January 24th, 2026]
- Machine learning revolutionises the development of nanocomposite membranes for CO capture - European Coatings - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - Leading data infrastructure is helping power better lives in Sunderland - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- How banks are responsibly embedding machine learning and GenAI into AML surveillance - Compliance Week - January 20th, 2026 [January 20th, 2026]
- Enhancing Teaching and Learning of Vocational Skills through Machine Learning and Cognitive Training (MCT) - Amrita Vishwa Vidyapeetham - January 20th, 2026 [January 20th, 2026]
- New Research in Annals of Oncology Shows Machine Learning Revelation of Global Cancer Trend Drivers - Oncodaily - January 20th, 2026 [January 20th, 2026]
- Machine learning-assisted mapping of VT ablation targets: progress and potential - Hospital Healthcare Europe - January 20th, 2026 [January 20th, 2026]
- Machine Learning Achieves Runtime Optimisation for GEMM with Dynamic Thread Selection - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- Machine learning algorithm predicts Bitcoin price on January 31, 2026 - Finbold - January 20th, 2026 [January 20th, 2026]
- AI and Machine Learning Transform Baldness Detection and Management - Bioengineer.org - January 20th, 2026 [January 20th, 2026]
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]