AWS and NVIDIA Collaborate on Next-Generation Infrastructure for Training Large Machine Learning Models and … – NVIDIA Blog
New Amazon EC2 P5 Instances Deployed in EC2 UltraClusters Are Fully Optimized to Harness NVIDIA Hopper GPUs for Accelerating Generative AI Training and Inference at Massive Scale
GTCAmazon Web Services, Inc. (AWS), an Amazon.com, Inc. company (NASDAQ: AMZN), and NVIDIA (NASDAQ: NVDA) today announced a multi-part collaboration focused on building out the world's most scalable, on-demand artificial intelligence (AI) infrastructure optimized for training increasingly complex large language models (LLMs) and developing generative AI applications.
The joint work features next-generation Amazon Elastic Compute Cloud (Amazon EC2) P5 instances powered by NVIDIA H100 Tensor Core GPUs and AWSs state-of-the-art networking and scalability that will deliver up to 20 exaFLOPS of compute performance for building and training the largest deep learning models. P5 instances will be the first GPU-based instance to take advantage of AWSs second-generation Elastic Fabric Adapter (EFA) networking, which provides 3,200 Gbps of low-latency, high bandwidth networking throughput, enabling customers to scale up to 20,000 H100 GPUs in EC2 UltraClusters for on-demand access to supercomputer-class performance for AI.
AWS and NVIDIA have collaborated for more than 12 years to deliver large-scale, cost-effective GPU-based solutions on demand for various applications such as AI/ML, graphics, gaming, and HPC, said Adam Selipsky, CEO at AWS. AWS has unmatched experience delivering GPU-based instances that have pushed the scalability envelope with each successive generation, with many customers scaling machine learning training workloads to more than 10,000 GPUs today. With second-generation EFA, customers will be able to scale their P5 instances to over 20,000 NVIDIA H100 GPUs, bringing supercomputer capabilities on demand to customers ranging from startups to large enterprises.
Accelerated computing and AI have arrived, and just in time. Accelerated computing provides step-function speed-ups while driving down cost and power as enterprises strive to do more with less. Generative AI has awakened companies to reimagine their products and business models and to be the disruptor and not the disrupted, said Jensen Huang, founder and CEO of NVIDIA. AWS is a long-time partner and was the first cloud service provider to offer NVIDIA GPUs. We are thrilled to combine our expertise, scale, and reach to help customers harness accelerated computing and generative AI to engage the enormous opportunities ahead.
New Supercomputing ClustersNew P5 instances are built on more than a decade of collaboration between AWS and NVIDIA delivering the AI and HPC infrastructure and build on four previous collaborations across P2, P3, P3dn, and P4d(e) instances. P5 instances are the fifth generation of AWS offerings powered by NVIDIA GPUs and come almost 13 years after its initial deployment of NVIDIA GPUs, beginning with CG1 instances.
P5 instances are ideal for training and running inference for increasingly complex LLMs and computer vision models behind the most-demanding and compute-intensive generative AI applications, including question answering, code generation, video and image generation, speech recognition, and more.
Specifically built for both enterprises and startups racing to bring AI-fueled innovation to market in a scalable and secure way, P5 instances feature eight NVIDIA H100 GPUs capable of 16 petaFLOPs of mixed-precision performance, 640 GB of high-bandwidth memory, and 3,200 Gbps networking connectivity (8x more than the previous generation) in a single EC2 instance. The increased performance of P5 instances accelerates the time-to-train machine learning (ML) models by up to 6x (reducing training time from days to hours), and the additional GPU memory helps customers train larger, more complex models. P5 instances are expected to lower the cost to train ML models by up to 40% over the previous generation, providing customers greater efficiency over less flexible cloud offerings or expensive on-premises systems.
Amazon EC2 P5 instances are deployed in hyperscale clusters called EC2 UltraClusters that are comprised of the highest performance compute, networking, and storage in the cloud. Each EC2 UltraCluster is one of the most powerful supercomputers in the world, enabling customers to run their most complex multi-node ML training and distributed HPC workloads. They feature petabit-scale non-blocking networking, powered by AWS EFA, a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. EFAs custom-built operating system (OS) bypass hardware interface and integration with NVIDIA GPUDirect RDMA enhances the performance of inter-instance communications by lowering latency and increasing bandwidth utilization, which is critical to scaling training of deep learning models across hundreds of P5 nodes. With P5 instances and EFA, ML applications can use NVIDIA Collective Communications Library (NCCL) to scale up to 20,000 H100 GPUs. As a result, customers get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of AWS. On top of these cutting-edge computing capabilities, customers can use the industrys broadest and deepest portfolio of services such as Amazon S3 for object storage, Amazon FSx for high-performance file systems, and Amazon SageMaker for building, training, and deploying deep learning applications. P5 instances will be available in the coming weeks in limited preview. To request access, visit https://pages.awscloud.com/EC2-P5-Interest.html.
With the new EC2 P5 instances, customers like Anthropic, Cohere, Hugging Face, Pinterest, and Stability AI will be able to build and train the largest ML models at scale. The collaboration through additional generations of EC2 instances will help startups, enterprises, and researchers seamlessly scale to meet their ML needs.
Anthropic builds reliable, interpretable, and steerable AI systems that will have many opportunities to create value commercially and for public benefit. At Anthropic, we are working to build reliable, interpretable, and steerable AI systems. While the large, general AI systems of today can have significant benefits, they can also be unpredictable, unreliable, and opaque. Our goal is to make progress on these issues and deploy systems that people find useful, said Tom Brown, co-founder of Anthropic. Our organization is one of the few in the world that is building foundational models in deep learning research. These models are highly complex, and to develop and train these cutting-edge models, we need to distribute them efficiently across large clusters of GPUs. We are using Amazon EC2 P4 instances extensively today, and we are excited about the upcoming launch of P5 instances. We expect them to deliver substantial price-performance benefits over P4d instances, and theyll be available at the massive scale required for building next-generation large language models and related products.
Cohere, a leading pioneer in language AI, empowers every developer and enterprise to build incredible products with world-leading natural language processing (NLP) technology while keeping their data private and secure. Cohere leads the charge in helping every enterprise harness the power of language AI to explore, generate, search for, and act upon information in a natural and intuitive manner, deploying across multiple cloud platforms in the data environment that works best for each customer, said Aidan Gomez, CEO at Cohere. NVIDIA H100-powered Amazon EC2 P5 instances will unleash the ability of businesses to create, grow, and scale faster with its computing power combined with Coheres state-of-the-art LLM and generative AI capabilities.
Hugging Face is on a mission to democratize good machine learning. As the fastest growing open source community for machine learning, we now provide over 150,000 pre-trained models and 25,000 datasets on our platform for NLP, computer vision, biology, reinforcement learning, and more, said Julien Chaumond, CTO and co-founder at Hugging Face. With significant advances in large language models and generative AI, were working with AWS to build and contribute the open source models of tomorrow. Were looking forward to using Amazon EC2 P5 instances via Amazon SageMaker at scale in UltraClusters with EFA to accelerate the delivery of new foundation AI models for everyone.
Today, more than 450 million people around the world use Pinterest as a visual inspiration platform to shop for products personalized to their taste, find ideas to do offline, and discover the most inspiring creators. We use deep learning extensively across our platform for use-cases such as labeling and categorizing billions of photos that are uploaded to our platform, and visual search that provides our users the ability to go from inspiration to action," said David Chaiken, Chief Architect at Pinterest. "We have built and deployed these use-cases by leveraging AWS GPU instances such as P3 and the latest P4d instances. We are looking forward to using Amazon EC2 P5 instances featuring H100 GPUs, EFA and Ultraclusters to accelerate our product development and bring new Empathetic AI-based experiences to our customers.
As the leader in multimodal, open-source AI model development and deployment, Stability AI collaborates with public- and private-sector partners to bring this next-generation infrastructure to a global audience. At Stability AI, our goal is to maximize the accessibility of modern AI to inspire global creativity and innovation, said Emad Mostaque, CEO of Stability AI. We initially partnered with AWS in 2021 to build Stable Diffusion, a latent text-to-image diffusion model, using Amazon EC2 P4d instances that we employed at scale to accelerate model training time from months to weeks. As we work on our next generation of open-source generative AI models and expand into new modalities, we are excited to use Amazon EC2 P5 instances in second-generation EC2 UltraClusters. We expect P5 instances will further improve our model training time by up to 4x, enabling us to deliver breakthrough AI more quickly and at a lower cost.
New Server Designs for Scalable, Efficient AILeading up to the release of H100, NVIDIA and AWS engineering teams with expertise in thermal, electrical, and mechanical fields have collaborated to design servers to harness GPUs to deliver AI at scale, with a focus on energy efficiency in AWS infrastructure. GPUs are typically 20x more energy efficient than CPUs for certain AI workloads, with the H100 up to 300x more efficient for LLMs than CPUs.
The joint work has included developing a system thermal design, integrated security and system management, security with the AWS Nitro hardware accelerated hypervisor, and NVIDIA GPUDirect optimizations for AWS custom-EFA network fabric.
Building on AWS and NVIDIAs work focused on server optimization, the companies have begun collaborating on future server designs to increase the scaling efficiency with subsequent-generation system designs, cooling technologies, and network scalability.
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]