Avalo uses machine learning to accelerate the adaptation of crops to climate change – TechCrunch
Climate change is affecting farming all over the world, and solutions are seldom simple. But if you could plant crops that resisted the heat, cold or drought instead of moving a thousand miles away, wouldnt you? Avalo helps plants like these become a reality using AI-powered genome analysis that can reduce the time and money it takes to breed hardier plants for this hot century.
Founded by two friends who thought theyd take a shot at a startup before committing to a life of academia, Avalo has a very direct value proposition, but it takes a bit of science to understand it.
Big seed and agriculture companies put a lot of work into creating better versions of major crops. By making corn or rice ever so slightly more resistant to heat, insects, drought or flooding, they can make huge improvements to yields and profits for farmers, or alternatively make a plant viable to grow somewhere it couldnt before.
There are big decreases to yields in equatorial areas and its not that corn kernels are getting smaller, said co-founder and CEO Brendan Collins. Farmers move upland because salt water intrusion is disrupting fields, but they run into early spring frosts that kill their seedlings. Or they need rust resistant wheat to survive fungal outbreaks in humid, wet summers. We need to create new varieties if we want to adapt to this new environmental reality.
To make those improvements in a systematic way, researchers emphasize existing traits in the plant; this isnt about splicing in a new gene but bringing out qualities that are already there. This used to be done by the simple method of growing several plants, comparing them, and planting the seeds of the one that best exemplifies the trait like Mendel in Genetics 101.
Nowadays, however, we have sequenced the genome of these plants and can be a little more direct. By finding out which genes are active in the plants with a desired trait, better expression of those genes can be targeted for future generations. The problem is that doing this still takes a long time as in a decade.
The difficult part of the modern process stems (so to speak) from the issue that traits, like survival in the face of a drought, arent just single genes. They may be any number of genes interacting in a complex way. Just as theres no single gene for becoming an Olympic gymnast, there isnt one for becoming drought-resistant rice. So when the companies do what are called genome-wide association studies, they end up with hundreds of candidates for genes that contribute to the trait, and then must laboriously test various combinations of these in living plants, which even at industrial rates and scales takes years to do.
Numbered, genetically differentiated rice plants being raised for testing purposes. Image Credits: Avalo
The ability to just find genes and then do something with them is actually pretty limited as these traits become more complicated, said Mariano Alvarez, co-founder and CSO of Avalo. Trying to increase the efficiency of an enzyme is easy, you just go in with CRISPR and edit it but increasing yield in corn, there are thousands, maybe millions of genes contributing to that. If youre a big strategic [e.g., Monsanto] trying to make drought-tolerant rice, youre looking at 15 years, 200 million dollars its a long play.
This is where Avalo steps in. The company has built a model for simulating the effects of changes to a plants genome, which they claim can reduce that 15-year lead time to two or three and the cost by a similar ratio.
The idea was to create a much more realistic model for the genome thats more evolutionarily aware, said Collins. That is, a system that models the genome and genes on it that includes more context from biology and evolution. With a better model, you get far fewer false positives on genes associated with a trait, because it rules out far more as noise, unrelated genes, minor contributors and so on.
He gave the example of a cold-tolerant rice strain that one company was working on. A genomewide association study found 566 genes of interest, and to investigate each costs somewhere in the neighborhood of $40,000 due to the time, staff and materials required. That means investigating this one trait might run up a $20 million tab over several years, which naturally limits both the parties who can even attempt such an operation, and the crops that they will invest the time and money in. If you expect a return on investment, you cant spend that kind of cash improving a niche crop for an outlier market.
Were here to democratize that process, said Collins. In that same body of data relating to cold-tolerant rice, We found 32 genes of interest, and based on our simulations and retrospective studies, we know that all of those are truly causal. And we were able to grow 10 knockouts to validate them, three in a three-month period.
In each graph, dots represent confidence levels in genes that must be tested. The Avalo model clears up the data and selects only the most promising ones. Image Credits: Avalo
To unpack the jargon a little there, from the start Avalos system ruled out more than 90% of the genes that would have had to be individually investigated. They had high confidence that these 32 genes were not just related, but causal having a real effect on the trait. And this was borne out with brief knockout studies, where a particular gene is blocked and the effect of that studied. Avalo calls its method gene discovery via informationless perturbations, or GDIP.
Part of it is the inherent facility of machine learning algorithms when it comes to pulling signal out of noise, but Collins noted that they needed to come at the problem with a fresh approach, letting the model learn the structures and relationships on its own. And it was also important to them that the model be explainable that is, that its results dont just appear out of a black box but have some kind of justification.
This latter issue is a tough one, but they achieved it by systematically swapping out genes of interest in repeated simulations with what amount to dummy versions, which dont disrupt the trait but do help the model learn what each gene is contributing.
Avalo co-founders Mariano Alvarez (left) and Brendan Collins by a greenhouse. Image Credits: Avalo
Using our tech, we can come up with a minimal predictive breeding set for traits of interest. You can design the perfect genotype in silico [i.e., in simulation] and then do intensive breeding and watch for that genotype, said Collins. And the cost is low enough that it can be done by smaller outfits or with less popular crops, or for traits that are outside possibilities since climate change is so unpredictable, who can say whether heat- or cold-tolerant wheat would be better 20 years from now?
By reducing the capital cost of undertaking this exercise, we sort of unlock this space where its economically viable to work on a climate-tolerant trait, said Alvarez.
Avalo is partnering with several universities to accelerate the creation of other resilient and sustainable plants that might never have seen the light of day otherwise. These research groups have tons of data but not a lot of resources, making them excellent candidates to demonstrate the companys capabilities.
The university partnerships will also establish that the system works for fairly undomesticated plants that need some work before they can be used at scale. For instance it might be better to supersize a wild grain thats naturally resistant to drought instead of trying to add drought resistance to a naturally large grain species, but no one was willing to spend $20 million to find out.
On the commercial side, they plan to offer the data handling service first, one of many startups offering big cost and time savings to slower, more established companies in spaces like agriculture and pharmaceuticals. With luck Avalo will be able to help bring a few of these plants into agriculture and become a seed provider as well.
The company just emerged from the IndieBio accelerator a few weeks ago and has already secured $3 million in seed funding to continue their work at greater scale. The round was co-led by Better Ventures and Giant Ventures, with At One Ventures, Climate Capital, David Rowan and of course IndieBio parent SOSV participating.
Brendan convinced me that starting a startup would be way more fun and interesting than applying for faculty jobs, said Alvarez. And he was totally right.
Read more:
Avalo uses machine learning to accelerate the adaptation of crops to climate change - TechCrunch
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]