Artificial intelligence will maximise efficiency of 5G network operations – ComputerWeekly.com
Compared with previous types of networks, 5G networks are both more in need of automation and more amenable to automation. Automation tools are still evolving and machine learning is not yet common in carrier-grade networking, but rapid change is expected.
Emerging standards from 3GPP, ETSI, ITU and the open source software community anticipate increased use of automation, artificial intelligence (AI) and machine learning (ML). And key suppliers activities add credibility to the vision and promise of artificially intelligent network operations.
Growing complexity and the need to solve repetitive tasks in 5G and future radio systems necessitate new automation solutions that take advantage of state-of-the-art artificial intelligence and machine learning techniques that boost system efficiency, wrote Ericssons chief technology officer (CTO), Erik Ekudden, recently.
In 2020, Ericsson engineers demonstrated machine learning software that orchestrated virtual machines on a web server. They reported that during a 12-hour stress test, their software decreased idle cycles to 2%, from a baseline of 20%. Similar efficiency gains could enhance collections of edge computers and computers within cloud-native 5G infrastructure.
Considering that 5G core networks are evolving towards increased dependence on software and generic computing resources, Ericssons demonstration suggests that large-scale use of AI solutions could help carriers use infrastructure as efficiently as possible while handling a mix of traffic types that change dynamically and fulfilling diverse service-level agreements.
Nokia marketing manager Filip De Greve recently stated: The benefits of AI and ML are unquestionable all it needs is the right approach and the right partner to unlock them.
A whitepaper from Nokia describes potential roles for AI and ML in virtually all phases of a service providers operations. Last month, Nokia announced the availability of its Software Enablement Platform, whose features include a means for making use of AI and ML in edge computers that run both open radio access networks (O-RANs) and application-level services. Nokias platform provides data that is important to machine learning developments for software-defined radios.
Carriers and third parties can develop software for Nokias platform, which comes with some samples that are in current commercial trials. One included xApp relies on machine learning methods for traffic steering roughly speaking, a type of service-aware load balancing for radio channels.
Huawei, too, has engaged in a number of machine learning developments in recent years, but seems to have made relatively few disclosures about the matter recently. The company said its management and orchestration (MANO) solution uses AI and big data technologies to implement automatic deployment, configuration, scaling and healing.
Needs for machine learning arise from expected challenges in managing future 5G networks. Future deployments will likely have traffic-carrying capacity orders of magnitude greater than existing infrastructures. Many suppliers, researchers and developers expect to need machine learning to make efficient use of 5G technologies.
Opportunities to use machine learning are arising with increased reliance on cloud-native resources in telecommunications networks. Carriers also experience the same powerful currents that impel many industries towards softwarisation, use of virtual machines, DevOps principles and other global vectors for intelligent automation.
Suppliers to telecoms carriers and advanced researchers are developing machine learning software that, for example, controls smart antennas with split-second timing, assigns and reassigns bandwidth within a packet core and orchestrates assignments for an edge computers virtual machines.
Essentially, the software plays a game, aiming to predict traffic loads and use the fewest resources to carry traffic in accordance with service-level agreements. The intended result would improve the availability of resources to serve additional customers at times when loads are at their peak. When loads abate, the software can cause hardware to operate in power-saving standby mode.
Rules-based scripts and statistical models can accomplish some of these goals, but hand-crafted algorithms face challenges. A vast number of parameters specify a connection event in a 5G network more so than in previous generations. That is why machine learning could be a requirement, not simply an optimisation tool, for efficient resource utilisation in full-scale 5G operations.
Recent reports have surveyed a range of wireless communications applications that machine learning researchers and developers are working on, yielding many candidate technologies for carrier roadmaps.
From a business lifecycle perspective, opportunities exist for machine learning developments to expedite network planning and design, operations, marketing and other duties that normally require an intelligent human. Developers are targeting network management functions, including fault management assurance, configuration, accounting, performance and security (FCAPS).
From a network technology perspective, machine learning applications in research and development phases could affect every layer of the communications stack, from low-level physical and data link layers, through media access, transport, switching, session, presentation and application layers.
At lower layers of radio access networks, generic computers process baseband signals, and they schedule and form directional radio beams by synchronising many antenna elements. Machine learning systems can alleviate congestion by assigning optimal modulation parameters and rapidly scheduling beams that are calculated to fulfil immediate demands.
At higher layers of communications stacks, softwarisation yields opportunities to use and reuse virtual network functions (VNFs) in dynamic combinations to handle changes in traffic patterns. For example, intelligent systems can right-size (autoscale) temporary combinations of resources to support a large video conference and reassign those resources to other jobs after the event.
In packet core networks, intelligent selection is among the astronomical number of ways to mix and match network functions to cut idling while keeping customers satisfied. In radio access networks, intelligent tweaks to power levels, symbol sets, frame sizes and other parameters promise to squeeze the greatest capacity from the available spectrum.
Cyber security and privacy measures can also benefit from machine learning. In theory, intelligent domain isolation can open and shut access automatically in accordance with knowledge encoded in large databases such as event logs. Distributed learning methods can run on edge computers and user devices, keeping private data separate from centralised databases.
Much as driverless cars are requiring more time and development resources than some expected, the vision of fully autonomic networks seems to remain a distant one Michael Gold
Junipers slogan the self-driving network expresses a vision of autonomous communications services, analogous to autonomous vehicles. Many other network technology developers have embraced similar ideas. Engineers and marketers often describe intent-based networking (IBN),one-touch provisioning, and zero-touch network and service management.
Most suppliers will probably use one of these phrases, or a similar phase. All of them refer to a subset of network operations that can occur autonomously, or nearly so. In fact, many software-defined networking technology concepts rely on rules-based systems, a programming strategy that the artificial intelligence community developed decades ago.
Verizon network architect Mehmet Toy recently described one interpretation of IBN to mean deploying and configuring the network resources according to operator intentions automatically. While developments often focus on fulfilling the intentions of network managers, Toy also envisions network configurations that respond to changes in user intentions.
Imaginably, a future network manager could employ natural language to revise a bandwidth-throttling policy. But beware of hype surrounding network automation. In some enterprise networks, zero-touch nodes configure automatically when a technician powers up a new rack. In contrast, installing a carrier-class fibre termination node remains complex.
Much as driverless cars are requiring more time and development resources than some expected, the vision of fully autonomic networks seems to remain a distant one. One major challenge consists of acquiring and analysing abundant telemetry data within service providers networks.
Many systems do not expose the data that data-hungry machine learning systems need to predict and respond to changes in traffic loads. Systems that do provide telemetry use diverse protocols and data structures, complicating AI software developments. Perhaps suppliers will see telemetry data as having high value as intellectual property and worthy of encryption.
A 2020 Nokia whitepaper advocates a multistage technology roadmap to manage the opportunities and risks. Nokia acknowledges that AI is rare in todays networks. More commonly, expert human network managers create, implement and often adjust statistical and rules-based models that govern automated systems in telecommunications networks.
Intermediate between todays model-driven practices and the future vision of autonomic networks, Nokia sees the emergence of intent-driven network management processes, enabled by closed-loop automation systems. Automated resource orchestration would free up human network managers to focus on business needs, service creation and DevOps.
In one sense, a changing technology landscape challenges networking professionals to keep up with new developments. In another sense, AI tools in diverse fields tend to be productivity enhancers rather than redundancy generators Michael Gold
Does AI threaten network managers jobs? In one sense, a changing technology landscape often challenges networking professionals to keep up with new developments. In another sense, AI tools in diverse fields tend to be productivity enhancers rather than redundancy generators. Similarly, for doctors and attorneys, AI is more of a tool than a threat.
One or another industry player seems to be always buzzing about intelligent networks. AT&T has been at it the longest, initially using the phrase in the 1980s to describe an early network computing initiative. Expectations of artificial intelligence in networks have focused and refocused repeatedly over the years. This time may be different. Are we there yet?
Now that computers control or constitute virtually all network nodes, software seems to be more agile at all layers of communications stacks. Business evolution will determine which AI and ML developments contribute most to business results and customer experiences, and which nodes in a network provide maximum leverage for machine learning software to add value.
More:
Artificial intelligence will maximise efficiency of 5G network operations - ComputerWeekly.com
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]