Artificial Intelligence and Machine Learning in Healthcare | JHL – Dove Medical Press
Innovative scientific and technological developments have ushered in a remarkable transformation in medicine that continues to impact virtually all stakeholders from patients to providers to Healthcare Organizations (HCOs) and the community in general.1,2 Increasingly incorporated into clinical practice over the past few decades, these innovations include widespread use of Electronic Health Records (EHR), telemedicine, robotics, and decision support for surgical procedures. Ingestible microchips allow healthcare providers to monitor patient compliance with prescribed pharmacotherapies and their therapeutic efficacy through big data analysis,15 as well as streamlining drug design, screening, and discovery.6 Adoption of novel medical technologies has allowed US healthcare to maintain its vanguard position in select domains of clinical care such as improving access by reducing wait times, enriching patient-provider communication, enhancing diagnostic accuracy, improving patient satisfaction, augmenting outcome prediction, decreasing mortality, and extending life expectancy.35,7
Yet despite the theoretical advantages of these innovative medical technologies, many issues remain requiring careful consideration as we integrate these novel technologies into our armamentarium. This descriptive literature-based article explicates on the advantages, future potential, challenges, and caveats with the predictable and impending importation of AI and ML into all facets of healthcare.
By far the most revolutionary of these novel technologies is Artificial Intelligence (AI), a branch of computer science that attempts to construct intelligent entities via Machine Learning (ML), which is the ability of computers to learn without being explicitly programed.8 ML utilizes algorithms to identify patterns, and its subspecialty Deep Learning (DL) employs artificial neural networks with intervening frameworks to identify patterns and data.1,8 Although ML was first conceived by computer scientist Arthur Samuel as far back as 1956, applications of AI have only recently begun to pervade our daily life with computers simulating human cognitioneg, visual perception, speech recognition, decision-making, and language translation.8 Everyday examples of AI include smart phones, autonomous vehicles, digital assistants (eg, Siri, Alexa), chatbots and auto-correcting software, online banking, facial recognition, and transportation (eg, Uber, air traffic control operations, etc.). The iterative nature of ML allows the machine to adapt its systems and outputs following exposure to new data with supervised learningie, utilizing training algorithms to predict future events from historical data inputsor unsupervised learning, whereby the machine explores the data and attempts to develop patterns or structures de novo. The latter methodology is often used to determine and distinguish outliers. Neural networks in AI utilize an adaptive system comprised of an interconnected group of artificial neurons and mathematical or computational modeling for processing information from input and output data via pattern recognition.9 Through predictive analytics, ML has demonstrated its effectiveness in the realm of finance (eg, identifying credit card fraud) and in the retail industry to anticipate customer behavior.1,10,11
Extrapolation of AI to medicine and healthcare is expected to increase exponentially in the three principal domains of research, teaching, and clinical care. With improved computational efficiencies, common applications of ML in healthcare will include enhanced diagnostic modalities, improved therapeutic interventions, augmenting and refining workflow by processing large amounts of hospital and national EHR data, more accurate clinical course and prediction through precision and personalized medicine, and genome interpretation. ML can provide basic clinical triage in geographical areas inaccessible to specialty care. It can also detect treatable psychiatric conditions via analysis of affective and anxiety disorders using speech patterns and facial expressions (eg, bipolar disorder, major depression, anxiety spectrum and psychotic disorders, attention deficit hyperactivity disorder, addiction disorders, Tourettes Syndrome, etc.)12,13 (Figure 1). Deep learning algorithms are highly effective compared to human interpretation in medical subspecialties where pattern recognition plays a dominant role, such as dermatology, hematology, oncology, histopathology, ophthalmology, radiology (eg, programmed image analyses), and neurology (eg, analysis for seizures utilizing electroencephalography). Artificial neural networks are being developed and employed for diagnostic accuracy, timely interventions, outcomes and prognostication of neurosurgical conditions, such as spinal stenosis, traumatic brain injury, brain tumors, and cerebral vasospasm following aneurysmal subarachnoid hemorrhage.14 Theoretically, ML can improve triage by directing patients to proper treatments at lower cost and by keeping those with chronic conditions out of costly and time-intensive emergency care centers. In clinical practice, ~5% of all patients account for 50% of healthcare costs, and those with chronic medical conditions comprise 85% of total US healthcare costs.3
Figure 1 Potential Applications of Machine Learning.
Patients can benefit from ML in other ways. For follow-up visits, not having to arrange transportation or take time off work for face-to-face interaction with healthcare providers may be an attractive alternative to patients and to the community, even more so in restricted circumstances like the recent COVID-19 pandemic-associated lockdowns and social distancing.
Ongoing ML-related research and its applications are robust. Companies developing automation, topological data analysis, genetic mapping, and communications systems include Pathway Genomics, Digital Reasoning Systems, Ayandi, Apixio, Butterfly Network, Benevolent AI, Flatiron Health, and several others.1,10
Despite the many theoretical advantages and potential benefits of ML in healthcare, several challenges (Figure 2) must be met15 before it can achieve broader acceptance and application.
Figure 2 Caveats and Challenges with use of Machine Learning.
Frequent software updates will be necessary to ensure continued improvement in ML-assisted models over time. Encouraging the use of such software, the Food and Drug Administration has recommended a pre-certified approach for agility.1,2 To be of pragmatic clinical import, high-quality input-data is paramount for validating and refining diagnostic and therapeutic procedures. At present, however, there is a dearth of robust comparative data that can be validated against the commonly accepted gold standard, comprised of blinded, placebo-controlled randomized clinical trials versus the ML-output data that is typically an area-under-the-curve analysis.1,7 Clinical data generated from ML-assisted calculations and more rigorous multi-variate analysis will entail integration with other relevant patient demographic information (eg, socio-economic status, including values, social and cultural norms, faith and belief systems, social support structures in-situ, etc.).16
All stakeholders in the healthcare delivery system (HCOs, providers, patients, and the community) will have to adjust to the paradigm shift away from traditional in-person interactions. Healthcare providers will have to surmount actual or perceived added workload to avoid burnout especially during the initial adaptive phase. They will also have to cope with increased ML-generated false-positive and -negative alerts. The traditional practice of clinical medicine is deeply entrenched in the framework of formulating a clinical hypothesis via rigorous history-taking and physical examination followed by sequential confirmation through judicious ancillary and diagnostic testing. Such traditional in-person interactions have underscored the importance of an empathetic approach to the provider-patient relationship. This traditional view has been characterized as archaic, particularly by those with a futuristic mindset, who envision an evolutionary change leading to whole body scans that deliver a more accurate assessment of health and diagnosis of disease. However, incidental findings not attributable to symptoms may lead to excessive ancillary tests underscoring the adage testing begets more testing.17
Healthcare is one of the fastest growing segments of the world economy and is presently at a crossroads of unprecedented transformation. As an example, US healthcare expenditure has accelerated dramatically over the past several decades (~19% of Gross National Product; exceeding $4.1 trillion, or $12,500 per person per year)18 with widespread ramifications for all stakeholders including patients and their families, healthcare providers, government, community, and the US economy.1,35 A paradigm shift from volume-based to performance-based reimbursements from third-party payers warrants focus on some of the most urgent issues in healthcare including cost containment, access, and providing low-cost, high-value healthcare commensurate with the proposed six-domain framework (safe, effective, patient-centered, timely, efficient, and equitable) articulated by the Institute of Medicine in 2001.35,19 Of note, uncontrolled use of expensive technology and excessive ancillary testing account for ~2530% of total healthcare costs.17 While technologies will probably never completely replace the function of healthcare providers, they will definitely transform healthcare, benefiting both providers and patients. However, there is a paucity of costbenefit data and analysis of the use of these innovative emerging medical technologies. All stakeholders should remain cost-conscious as the newer technological diagnostic approaches may further drive up the already rising costs of healthcare. Educating and training the next generation of healthcare providers in the context of AI will also require transformation with simulation approaches and inter-professional education. Therefore, the value proposition of novel technologies must be critically appraised via longitudinal and continuous valuations and patient outcomes in terms of its impact on health and disease management.13 To mitigate healthcare costs, we must control the technological imperativethe overuse of technology because of easy availability without due consideration to disease course or outcomes and irrespective of costbenefit ratio.3
Issues surrounding consumer privacy and proprietorship of colossal quantities of healthcare data under an AI regime are legitimate concerns. Malicious or unintentional breaches may result in financial or other harm. Akin to the challenges encountered with EHR, easy access to data and interoperability with broader compatibility of interfaces by healthcare providers spread across space and time will present unique challenges. Databases will likely be owned by large profit-oriented technology companies who may decide to dispense data to third parties. Additional costs are predictable as well, particularly during the early stages of development of ML algorithms, which is likely to be more bearable to large HCOs. Delay in the use of such processes is anticipated by smaller organizations with resulting potential for mergers and acquisitions or even failure of smaller hospitals and clinics. Concerns regarding ownership, responsibility, and accountability of ML algorithms may arise owing to the probability of detrimental outcomes, which ideally should be apportioned between developer, interpreter, healthcare provider, and patient.1 Simulation techniques can be preemptively utilized for ML training for clinical scenarios; practice runs may require formal certification courses and workshops. Regulations must be developed by policymakers and legislative bodies to delineate the role of third-party payers in ML-assisted healthcare financing. Finally, education and training via media outlets, internet, and social media will be necessary to address public opinion, misperceptions, and nave expectations about ML-assisted algorithms.7
For centuries, the practice of medicine has been deeply embedded in a tradition of meticulous history-taking, physical examination, and thoughtful ancillary investigations to confirm clinical hypotheses and diagnoses. The great physician, Sir William Osler (18491919)14,20 encapsulated the desired practice of good medicine with his famous quotes, Listen to your patient he is telling you the diagnosis, The good physician treats the disease; the great physician treats the patient who has the disease, and Medicine is a science of uncertainty and an art of probability. With rapid technological advances, we are at the crossroads of practicing medicine that would be distinctly different from the traditional approach and practice(s), a change that may be characterized as evolutionary.
AI and ML have enormous potential to transform healthcare and the practice of medicine, although these modalities will never substitute an astute and empathetic bedside clinician. Furthermore, several issues remain as to whether their value proposition and cost-benefit are complementary to the overarching focus on providing low-cost, high-value healthcare to the community at large. While innovative technological advances play a critical role in the rapid diagnosis and management of disease, the phenomenon of the technological imperative35,17 deserves special consideration among both public and providers for the future use of AI and ML in delivering healthcare.
The author reports no conflicts of interest in this work.
1. Bhardwaj R, Nambiar AR, Dutta D A Study of Machine Learning in Healthcare. 2017 IEEE 41st Annual Computer Software and Applications Conference. 236241. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8029924. Accessed March 30, 2022.
2. Deo RC. Machine Learning in Medicine. Circulation. 2015;132:19201930. doi:10.1161/CIRCULATIONAHA.115.001593
3. Shi L, Singh DA. Delivering Health Care in America: A Systems Approach. 7th ed. Burlington, MA: Jones & Bartlett Learning; 2019.
4. Barr DA. Introduction to US Health Policy. The Organization, Financing, and Delivery of Health Care in America. 4th ed. Baltimore, MD: John Hopkins University Press; 2016.
5. Wilensky SE, Teitelbaum JB. Essentials of Health Policy and Law. Fourth ed. Burlington, MA: Jones & Bartlett Learning; 2020.
6. Gupta R, Srivastava D, Sahu M, Tiwan S, Ambasta RK, Kumar P. Artificial intelligence to deep learning; machine intelligence approach for drug discovery. Mol Divers. 2021;25:13151360. doi:10.1007/s11030-021-10217-3
7. Dabi A, Taylor AJ. Machine Learning, Ethics and Brain Death Concepts and Framework. Arch Neurol Neurol Disord. 2020;3:19.
8. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Int Med. 2018;284:603619. doi:10.1111/joim.12822
9. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982;79:25542558. doi:10.1073/pnas.79.8.2554
10. Ghassemi M, Naumann T, Schulam P, Beam AL, Ranganath R Opportunities in Machine Learning for Healthcare. 2018. Available from: https://pdfs.semanticscholar.org/1e0b/f0543d2f3def3e34c51bd40abb22a05937bc.pdf. Accessed March 30, 2022.
11. Jnr YA Artificial Intelligence and Healthcare: a Qualitative Review of Recent Advances and Predictions for the Future. Available from: https://pimr.org.in/2019-vol7-issue-3/YawAnsongJnr_v3.pdf. Accessed March 30, 2022.
12. Chandler C, Foltz PW, Elvevag B. Using machine learning in Psychiatry; the need to establish a Framework that nurtures trustworthiness. Schizophr Bull. 2019;46:1114.
13. Ray A, Bhardwaj A, Malik YK, Singh S, Gupta R. Artificial intelligence and Psychiatry: an overview. Asian J Psychiatr. 2022;70:103021. doi:10.1016/j.ajp.2022.103021
14. Ganapathy K Artificial intelligence in neurosciences-are we really there? Available from: https://www.sciencedirect.com/science/article/pii/B9780323900379000084. Accessed June 10, 2022.
15. Sunarti S, Rahman FF, Naufal M, Risky M, Febriyanto K, Mashina R. Artificial intelligence in healthcare: opportunities and risk for future. Gac Sinat. 2012;35(S1):S67S70. doi:10.1016/j.gaceta.2020.12.019.
16. Yu B, Beam A, Kohane I. Artificial Intelligence in Healthcare. Nature Biomed Eng. 2018;2:719731. doi:10.1038/s41551-018-0305-z
17. Bhardwaj A. Excessive Ancillary Testing by Healthcare Providers: reasons and Proposed Solutions. J Hospital Med Management. 2019;5(1):16.
18. Fact Sheet NHE. Centers for Medicare and Medicaid Services. Available from: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet. Accessed April 14, 2022.
19. Institute of Medicine (IOM). Crossing the Quality Chasm: A New Health System for the 21st Century. Washington, D.C: National Academy Press; 2001.
20. Bliss M. William Osler: A Life in Medicine. New York, NY: Oxford University Press; 1999.
More:
Artificial Intelligence and Machine Learning in Healthcare | JHL - Dove Medical Press
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]