AIs J-curve and upcoming productivity boom – TechTalks
This article is part of our series that explores thebusiness of artificial intelligence
Digital technologies, and at their forefront artificial intelligence, are triggering fundamental shifts in society, politics, education, economy, and other fundamental aspects of life. These changes provide opportunities for unprecedented growth across different sectors of the economy. But at the same time, they entail challenges that organizations must overcome before they can tap into their full potential.
In a recent talk at an online conference organized by Stanford Human-Centered Artificial Intelligence (HAI), Stanford professor Erik Brynjolfsson discussed some of these opportunities and challenges.
Brynjolfsson, who directs Stanfords Digital Economy Lab, believes that in the coming decade, the use of artificial intelligence will be much more widespread than it is today. But its adoption will also face a period of lull, also known as the J-curve.
Theres a growing gap between what the technology is capable of and what it is already doing versus how we are responding to that, Brynjolfsson says. And thats where a lot of our societys biggest challenges and problems and some of our biggest opportunities lie.
According to Brynjolfsson, the next decade will see significantly higher productivity thanks to a wave of powerful technologiesespecially machine learningthat are finding their way into every computing device and application.
Advances in computer vision have been tremendous, especially in areas such as image recognition and medical imaging. Talking to phones, watches, and smart speakers has become commonplace thanks to advances in natural language processing and speech recognition. Product recommendation, ad placement, insurance underwriting, loan approval, and many other applications have benefited immensely from advances in machine learning.
In many areas, machine learning is reducing costs and accelerating production. For example, the application of large language models in programming can help software developers become much more productive and achieve more in less time.
In other areas, machine learning can help create applications that did not exist before. For example, generative deep learning models are creating new applications for arts, music, and other creative work. In areas such as online shopping, advances in machine learning can create major shifts in business models, such as moving from shopping-then-shipping to shipping-then-shopping.
The lockdowns and urgency caused by the covid-19 pandemic accelerated the adoption of these technologies in different sectors, including remote work tools, robotic process automation, powered drug research, and factory automation.
The pandemic has been horrific in so many ways, but another thing its done is its accelerated the digitization of the economy, compressing in about 20 weeks what would have taken maybe 20 years of digitization, Brynjolfsson says. Weve all invested in technologies that are allowing us to adapt to a more digital world. Were not going to stay as remote as we are now, but were not going all the way back either. And that increased digitization of business processes and skills compresses the timeframe for us to adopt these new ways of working and ultimately drive higher productivity.
The productivity potential of machine learning technologies has one big caveat.
Historically, when these new technologies become available, they dont immediately translate into productivity growth. Often theres a period where productivity declines, where theres a lull, Brynjolfsson says. And the reason theres this lull is that you need to reinvent your organizations, you need to develop new business processes.
Brynjolfsson calls this the Productivity J-Curve and has documented it in a paper published in the American Economic Journal: Macroeconomics. Basically, the great potential caused by new general-purpose technologies like the steam engine, electricity, and more recently machine learning requires fundamental changes in business processes and workflows, the co-invention of new products and business models, and investment in human capital.
These investments and changes often take several years, and during this period, they dont yield tangible results. During this phase, the companies are creating intangible assets, according to Brynjolfsson. For example, they might be training and reskilling their workforce to employ these new technologies. They might be redesigning their factories or instrumenting them with new sensor technologies to take advantage of machine learning models. They might need to revamp their data infrastructure and create data lakes on which they can train and run ML models.
These efforts might cost millions of dollars (or billions in the case of large corporations) and make no change in the companys output in the short term. At first glance, it seems that costs are increasing without any return on investment. When these changes reach their turning point, they result in a sudden increase in productivity.
Were in this period right now where were making a lot of that painful transition, restructuring work, and theres a lot of companies that are struggling with that, Brynjolfsson says. But were working through that, and these J-curves will lead to higher productivityaccording to our research, were near the bottom and turning up.
Unfortunately, adapting to AI and other new digital technologies does not run on a predictable path. Most firms arent making the transition correctly or lack the creativity and understanding to make the transition. Various studies show that most applied machine learning projects fail.
Only about the top 10-15 percent of firms are doing most of the investment in these intangibles. The other 85-90 percent of firms are lagging behind and are hardly making any of these restructuring needed, Brynjolfsson says. This is not just the big tech firms. This is within every industry, manufacturing, retail, finance, resources. In each category, were seeing the leading firms pulling away from the rest. Theres a growing performance gap.
But while adopting new technologies is going to be difficult, it is happening at a much faster pace in comparison to previous cycles of technological advances because we are better prepared to make the transition.
I think what is becoming clear is that its going to happen a lot faster in part because we have a much more professional class of people trying to study what works and what doesnt work, Brynjolfsson says. Some of them are in business schools and academia. A lot of them are in consulting companies. Some of them are journalists. And there are people who are describing which practices work and which dont.
Another element that can help immensely is the availability of machine learning and data science tools to process and study the huge amounts of data available on organizations, people, and the economy.
For example, Brynjolfsson and his colleagues are working on a big dataset of 200 million job postings, which include the full text of the job description along with other information. Using different machine learning models and natural language processing techniques, they can transform the job posts into numerical vectors that can then be used for various tasks.
We think of all the jobs as this mathematical space. We can understand how they can relate to each other, Brynjolfsson says.
For example, they can make simple inferences such as how similar or different two or more job posts are based on their text descriptions. They can use other techniques such as clustering and graph neural networks to draw more important conclusions such as what kind of skills are more in demand, or how would the characteristics of a job post change if you modified the description to add AI skills such as Python or TensorFlow. Companies can use these models to find holes in their hiring strategies or to analyze the hiring decisions of their competitors and leading organizations.
Those kinds of tools just didnt exist as recently as five years ago, and I think its a revolution that is just as important as the microscope or some of the other revolutions in science, Brynjolfsson says. We now have them for social sciences and business to have this kind of visibility. Thats allowing us to make a transition a lot more rapidly than before.
However, Brynjolfsson warns that not many companies are using these kinds of tools. This is perhaps further testament to his previous point that companies have not yet figured out the right transition strategy and are relying on old methods to restructure and adapt themselves to the age of AI. And at the center of this strategy should be the correct use of human capital.
You have hundreds of billions of dollars of human capital, of skills walking out the door, and then the company tries to hire back people with the skills that they need. What they dont realize is that the workers that they let go often had skills that were very adjacent to the ones theyre hiring for, Brynjolfsson says.
With the help of machine learning, they will have better visibility and knowledge of their skill adjacencies, Brynjolfsson says. For example, a company might discover that instead of laying off a bunch of people and looking to hire new talent, perhaps all they need to do is a little bit of retraining and repurposing of their workforce.
Its much more expensive to hire somebody fresh than would have been for them to take some of those people who are already in the company and say, if we teach you Python or customer service skills or other skills, you can be doing this job that were looking to hire people for, Brynjolfsson says. My hope is that, in the coming decade, workers will be in a much better position to take full advantage of their capabilities and skills. And it will be good for the companies too to understand all the assets that they have in there, and machine learning can help a lot with understanding those relationships.
Link:
AIs J-curve and upcoming productivity boom - TechTalks
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]