AI: The pattern is not in the data, it’s in the machine – ZDNet
A neural network transforms input, the circles on the left, to output, on the right. How that happens is a transformation of weights, center, which we often confuse for patterns in the data itself.
It's a commonplace of artificial intelligence to say that machine learning, which depends on vast amounts of data, functions by finding patterns in data.
The phrase, "finding patterns in data," in fact, has been a staple phrase of things such as data mining and knowledge discovery for years now, and it has been assumed that machine learning, and its deep learning variant especially, are just continuing the tradition of finding such patterns.
AI programs do, indeed, result in patterns, but, just as "The fault, dear Brutus, lies not in our stars but in ourselves," the fact of those patterns is not something in the data, it is what the AI program makes of the data.
Almost all machine learning models function via a learning rule that changes the so-called weights, also known as parameters, of the program as the program is fed examples of data, and, possibly, labels attached to that data. It is the value of the weights that counts as "knowing" or "understanding."
The pattern that is being found is really a pattern of how weights change. The weights are simulating how real neurons are believed to "fire", the principle formed by psychologist Donald O. Hebb, which became known as Hebbian learning, the idea that "neurons that fire together, wire together."
Also: AI in sixty seconds
It is the pattern of weight changes that is the model for learning and understanding in machine learning, something the founders of deep learning emphasized. As expressed almost forty years ago, in one of the foundational texts of deep learning, Parallel Distributed Processing, Volume I, James McClelland, David Rumelhart, and Geoffrey Hinton wrote,
What is stored is the connection strengths between units that allow these patterns to be created [] If the knowledge is the strengths of the connections, learning must be a matter of finding the right connection strengths so that the right patterns of activation will be produced under the right circumstances.
McClelland, Rumelhart, and Hinton were writing for a select audience, cognitive psychologists and computer scientists, and they were writing in a very different age, an age when people didn't make easy assumptions that anything a computer did represented "knowledge." They were laboring at a time when AI programs couldn't do much at all, and they were mainly concerned with how to produce a computation, any computation, from a fairly limited arrangement of transistors.
Then, starting with the rise of powerful GPU chips some sixteen years ago, computers really did begin to produce interesting behavior, capped off by the landmark ImageNet performance of Hinton's work with his graduate students in 2012 that marked deep learning's coming of age.
As a consequence of the new computer achievements, the popular mind started to build all kinds of mythology around AI and deep learning. There was a rush of really bad headlines likening the technology to super-human performance.
Also: Why is AI reporting so bad?
Today's conception of AI has obscured what McClelland, Rumelhart, and Hinton focused on, namely, the machine, and how it "creates" patterns, as they put it. They were very intimately familiar with the mechanics of weights constructing a pattern as a response to what was, in the input, merely data.
Why does all that matter? If the machine is the creator of patterns, then the conclusions people draw about AI are probably mostly wrong. Most people assume a computer program is perceiving a pattern in the world, which can lead to people deferring judgment to the machine. If it produces results, the thinking goes, the computer must be seeing something humans don't.
Except that a machine that constructs patterns isn't explicitly seeing anything. It's constructing a pattern. That means what is "seen" or "known" is not the same as the colloquial, everyday sense in which humans speak of themselves as knowing things.
Instead of starting from the anthropocentric question, What does the machine know? it's best to start from a more precise question, What is this program representing in the connections of its weights?
Depending on the task, the answer to that question takes many forms.
Consider computer vision. The convolutional neural network that underlies machine learning programs for image recognition and other visual perception is composed of a collection of weights that measure pixel values in a digital image.
The pixel grid is already an imposition of a 2-D coordinate system on the real world. Provided with the machine-friendly abstraction of the coordinate grid, a neural net's task of representation boils down to matching the strength of collections of pixels to a label that has been imposed, such as "bird" or "blue jay."
In a scene containing a bird, or specifically a blue jay, many things may be happening, including clouds, sunshine, and passers by. But the scene in its entirety is not the thing. What matters to the program is the collection of pixels most likely to produce an appropriate label. The pattern, in other words, is a reductive act of focus and selection inherent in the activation of neural net connections.
You might say, a program of this kind doesn't "see" or "perceive" so much as it filters.
Also: A new experiment: Does AI really know cats or dogs -- or anything?
The same is true in games, where AI has mastered chess and poker. In the full information game of chess, for DeepMind's AlphaZero program, the machine learning task boils down to crafting a probability score at each moment of how much a potential next move will lead ultimately to win, lose or draw.
Because the number of potential future game board configurations cannot be calculated even by the fastest computers, the computer's weights cut short the search for moves by doing what you might call summarizing. The program summarizes the likelihood of a success if one were to pursue several moves in a given direction, and then compares that summary to the summary of potential moves to be taken in another direction.
Whereas the state of the board at any moment the position of pieces, and which pieces remain might "mean" something to a human chess grandmaster, it's not clear the term "mean" has any meaning for DeepMind's AlphaZero for such a summarizing task.
A similar summarizing task is achieved for the Pluribus program that in 2019 conquered the hardest form of poker, No-limit Texas hold'em. That game is even more complex in that it has hidden information, the players' face down cards, and additional "stochastic" elements of bluffing. But the representation is, again, a summary of likelihoods by each turn.
Even in human language, what's in the weights is different from what the casual observer might suppose. GPT-3, the top language program from OpenAI, can produce strikingly human-like output in sentences and paragraphs.
Does the program "know" language? Its weights hold a representation of the likelihood of how individual words and even whole strings of text are found in sequence with other words and strings.
You could call that function of a neural net a summary similar to AlphaGo or Pluribus, given that the problem is rather like chess or poker. But the possible states to be represented as connections in the neural net are not just vast, they are infinite given the infinite composability of language.
On the other hand, given that the output of a language program such as GPT-3, a sentence, is a fuzzy answer rather than a discrete score, the "right answer" is somewhat less demanding than the win, lose or draw of chess or poker. You could also call this function of GPT-3 and similar programs an "indexing" or an inventory" of things in their weights.
Also: What is GPT-3? Everything your business needs to know about OpenAI's breakthrough AI language program
Do humans have a similar kind of inventory or index of language? There doesn't seem to be any indication of it so far in neuroscience. Likewise, in the expression"to tell the dancer from the dance,"does GPT-3 spot the multiple levels of significance in the phrase, or the associations? It's not clear such a question even has a meaning in the context of a computer program.
In each of these cases chess board, cards, word strings the data are what they are: a fashioned substrate divided in various ways, a set of plastic rectangular paper products, a clustering of sounds or shapes. Whether such inventions "mean" anything, collectively, to the computer, is only a way of saying that a computer becomes tuned in response, for a purpose.
The things such data prompt in the machine filters, summarizations, indices, inventories, or however you want to characterize those representations are never the thing in itself. They are inventions.
Also: DeepMind: Why is AI so good at language? It's something in language itself
But, you may say, people see snowflakes and see their differences, and also catalog those differences, if they have a mind to. True, human activity has always sought to find patterns, via various means. Direct observation is one of the simplest means, and in a sense, what is being done in a neural network is a kind of extension of that.
You could say the neural network revels what was always true in human activity for millennia, that to speak of patterns is a thing imposed on the world rather than a thing in the world. In the world, snowflakes have form but that form is only a pattern to a person who collects and indexes them and categorizes them. It is a construction, in other words.
The activity of creating patterns will increase dramatically as more and more programs are unleashed on the data of the world, and their weights are tuned to form connections that we hope create useful representations. Such representations may be incredibly useful. They may someday cure cancer. It is useful to remember, however, that the patterns they reveal are not out there in the world, they are in the eye of the perceiver.
Also: DeepMind's 'Gato' is mediocre, so why did they build it?
Excerpt from:
AI: The pattern is not in the data, it's in the machine - ZDNet
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]