AI that can learn the patterns of human language – MIT News
Human languages are notoriously complex, and linguists have long thought it would be impossible to teach a machine how to analyze speech sounds and word structures in the way human investigators do.
But researchers at MIT, Cornell University, and McGill University have taken a step in this direction. They have demonstrated an artificial intelligence system that can learn the rules and patterns of human languages on its own.
When given words and examples of how those words change to express different grammatical functions (like tense, case, or gender) in one language, this machine-learning model comes up with rules that explain why the forms of those words change. For instance, it might learn that the letter a must be added to end of a word to make the masculine form feminine in Serbo-Croatian.
This model can also automatically learn higher-level language patterns that can apply to many languages, enabling it to achieve better results.
The researchers trained and tested the model using problems from linguistics textbooks that featured 58 different languages. Each problem had a set of words and corresponding word-form changes. The model was able to come up with a correct set of rules to describe those word-form changes for 60 percent of the problems.
This system could be used to study language hypotheses and investigate subtle similarities in the way diverse languages transform words. It is especially unique because the system discovers models that can be readily understood by humans, and it acquires these models from small amounts of data, such as a few dozen words. And instead of using one massive dataset for a single task, the system utilizes many small datasets, which is closer to how scientists propose hypotheses they look at multiple related datasets and come up with models to explain phenomena across those datasets.
One of the motivations of this work was our desire to study systems that learn models of datasets that is represented in a way that humans can understand. Instead of learning weights, can the model learn expressions or rules? And we wanted to see if we could build this system so it would learn on a whole battery of interrelated datasets, to make the system learn a little bit about how to better model each one, says Kevin Ellis 14, PhD 20, an assistant professor of computer science at Cornell University and lead author of the paper.
Joining Ellis on the paper are MIT faculty members Adam Albright, a professor of linguistics; Armando Solar-Lezama, a professor and associate director of the Computer Science and Artificial Intelligence Laboratory (CSAIL); and Joshua B. Tenenbaum, the Paul E. Newton Career Development Professor of Cognitive Science and Computation in the Department of Brain and Cognitive Sciences and a member of CSAIL; as well as senior author
Timothy J. ODonnell, assistant professor in the Department of Linguistics at McGill University, and Canada CIFAR AI Chair at the Mila -Quebec Artificial IntelligenceInstitute.
The research is published today in Nature Communications.
Looking at language
In their quest to develop an AI system that could automatically learn a model from multiple related datasets, the researchers chose to explore the interaction of phonology (the study of sound patterns) and morphology (the study of word structure).
Data from linguistics textbooks offered an ideal testbed because many languages share core features, and textbook problems showcase specific linguistic phenomena. Textbook problems can also be solved by college students in a fairly straightforward way, but those students typically have prior knowledge about phonology from past lessons they use to reason about new problems.
Ellis, who earned his PhD at MIT and was jointly advised by Tenenbaum and Solar-Lezama, first learned about morphology and phonology in an MIT class co-taught by ODonnell, who was a postdoc at the time, and Albright.
Linguists have thought that in order to really understand the rules of a human language, to empathize with what it is that makes the system tick, you have to be human. We wanted to see if we can emulate the kinds of knowledge and reasoning that humans (linguists) bring to the task, says Albright.
To build a model that could learn a set of rules for assembling words, which is called a grammar, the researchers used a machine-learning technique known as Bayesian Program Learning. With this technique, the model solves a problem by writing a computer program.
In this case, the program is the grammar the model thinks is the most likely explanation of the words and meanings in a linguistics problem. They built the model using Sketch, a popular program synthesizer which was developed at MIT by Solar-Lezama.
But Sketch can take a lot of time to reason about the most likely program. To get around this, the researchers had the model work one piece at a time, writing a small program to explain some data, then writing a larger program that modifies that small program to cover more data, and so on.
They also designed the model so it learns what good programs tend to look like. For instance, it might learn some general rules on simple Russian problems that it would apply to a more complex problem in Polish because the languages are similar. This makes it easier for the model to solve the Polish problem.
Tackling textbook problems
When they tested the model using 70 textbook problems, it was able to find a grammar that matched the entire set of words in the problem in 60 percent of cases, and correctly matched most of the word-form changes in 79 percent of problems.
The researchers also tried pre-programming the model with some knowledge it should have learned if it was taking a linguistics course, and showed that it could solve all problems better.
One challenge of this work was figuring out whether what the model was doing was reasonable. This isnt a situation where there is one number that is the single right answer. There is a range of possible solutions which you might accept as right, close to right, etc., Albright says.
The model often came up with unexpected solutions. In one instance, it discovered the expected answer to a Polish language problem, but also another correct answer that exploited a mistake in the textbook. This shows that the model could debug linguistics analyses, Ellis says.
The researchers also conducted tests that showed the model was able to learn some general templates of phonological rules that could be applied across all problems.
One of the things that was most surprising is that we could learn across languages, but it didnt seem to make a huge difference, says Ellis. That suggests two things. Maybe we need better methods for learning across problems. And maybe, if we cant come up with those methods, this work can help us probe different ideas we have about what knowledge to share across problems.
In the future, the researchers want to use their model to find unexpected solutions to problems in other domains. They could also apply the technique to more situations where higher-level knowledge can be applied across interrelated datasets. For instance, perhaps they could develop a system to infer differential equations from datasets on the motion of different objects, says Ellis.
This work shows that we have some methods which can, to some extent, learn inductive biases. But I dont think weve quite figured out, even for these textbook problems, the inductive bias that lets a linguist accept the plausible grammars and reject the ridiculous ones, he adds.
This work opens up many exciting venues for future research. I am particularly intrigued by the possibility that the approach explored by Ellis and colleagues (Bayesian Program Learning, BPL) might speak to how infants acquire language, says T. Florian Jaeger, a professor of brain and cognitive sciences and computer science at the University of Rochester, who was not an author of this paper. Future work might ask, for example, under what additional induction biases (assumptions about universal grammar) the BPL approach can successfully achieve human-like learning behavior on the type of data infants observe during language acquisition. I think it would be fascinating to see whether inductive biases that are even more abstract than those considered by Ellis and his team such as biases originating in the limits of human information processing (e.g., memory constraints on dependency length or capacity limits in the amount of information that can be processed per time) would be sufficient to induce some of the patterns observed in human languages.
This work was funded, in part, by the Air Force Office of Scientific Research, the Center for Brains, Minds, and Machines, the MIT-IBM Watson AI Lab, the Natural Science and Engineering Research Council of Canada, the Fonds de Recherche du Qubec Socit et Culture, the Canada CIFAR AI Chairs Program, the National Science Foundation (NSF), and an NSF graduate fellowship.
Read more:
AI that can learn the patterns of human language - MIT News
- Apple Makes One Of Its Largest Ever Acquisitions, Buys The Israeli Machine Learning Firm, Q.ai - Wccftech - February 1st, 2026 [February 1st, 2026]
- Keysights Machine Learning Toolkit to Speed Device Modeling and PDK Dev - All About Circuits - February 1st, 2026 [February 1st, 2026]
- University of Missouri Study: AI/Machine Learning Improves Cardiac Risk Prediction Accuracy - Quantum Zeitgeist - February 1st, 2026 [February 1st, 2026]
- How AI and Machine Learning Are Transforming Mobile Banking Apps - vocal.media - February 1st, 2026 [February 1st, 2026]
- Machine Learning in Production? What This Really Means - Towards Data Science - January 28th, 2026 [January 28th, 2026]
- Best Machine Learning Stocks of 2026 and How to Invest in Them - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Machine learning-based prediction of mortality risk from air pollution-induced acute coronary syndrome in the Western Pacific region - Nature - January 28th, 2026 [January 28th, 2026]
- Machine Learning Predicts the Strength of Carbonated Recycled Concrete - AZoBuild - January 28th, 2026 [January 28th, 2026]
- Vertiv Next Predict is a new AI-powered, managed service that combines field expertise and advanced machine learning algorithms to anticipate issues... - January 28th, 2026 [January 28th, 2026]
- Machine Learning in Network Security: The 2026 Firewall Shift - openPR.com - January 28th, 2026 [January 28th, 2026]
- Why IBMs New Machine-Learning Model Is a Big Deal for Next-Generation Chips - TipRanks - January 24th, 2026 [January 24th, 2026]
- A no-compromise amplifier solution: Synergy teams up with Wampler and Friedman to launch its machine-learning power amp and promises to change the... - January 24th, 2026 [January 24th, 2026]
- Our amplifier learns your cabinets impedance through controlled sweeps and continues to monitor it in real-time: Synergys Power Amp Machine-Learning... - January 24th, 2026 [January 24th, 2026]
- Machine Learning Studied to Predict Response to Advanced Overactive Bladder Therapies - Sandip Vasavada - UroToday - January 24th, 2026 [January 24th, 2026]
- Blending Education, Machine Learning to Detect IV Fluid Contaminated CBCs, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Why its critical to move beyond overly aggregated machine-learning metrics - MIT News - January 24th, 2026 [January 24th, 2026]
- Machine Learning Lends a Helping Hand to Prosthetics - AIP Publishing LLC - January 24th, 2026 [January 24th, 2026]
- Hassan Taher Explains the Fundamentals of Machine Learning and Its Relationship to AI - mitechnews.com - January 24th, 2026 [January 24th, 2026]
- Keysight targets faster PDK development with machine learning toolkit - eeNews Europe - January 24th, 2026 [January 24th, 2026]
- Training and external validation of machine learning supervised prognostic models of upper tract urothelial cancer (UTUC) after nephroureterectomy -... - January 24th, 2026 [January 24th, 2026]
- Age matters: a narrative review and machine learning analysis on shared and separate multidimensional risk domains for early and late onset suicidal... - January 24th, 2026 [January 24th, 2026]
- Uncovering Hidden IV Fluid Contamination Through Machine Learning, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Machine learning identifies factors that may determine the age of onset of Huntington's disease - Medical Xpress - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - WEF expands Fourth Industrial Revolution Network - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- Machine-learning analysis reclassifies armed conflicts into three new archetypes - The Brighter Side of News - January 24th, 2026 [January 24th, 2026]
- Machine learning and AI the future of drought monitoring in Canada - sasktoday.ca - January 24th, 2026 [January 24th, 2026]
- Machine learning revolutionises the development of nanocomposite membranes for CO capture - European Coatings - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - Leading data infrastructure is helping power better lives in Sunderland - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- How banks are responsibly embedding machine learning and GenAI into AML surveillance - Compliance Week - January 20th, 2026 [January 20th, 2026]
- Enhancing Teaching and Learning of Vocational Skills through Machine Learning and Cognitive Training (MCT) - Amrita Vishwa Vidyapeetham - January 20th, 2026 [January 20th, 2026]
- New Research in Annals of Oncology Shows Machine Learning Revelation of Global Cancer Trend Drivers - Oncodaily - January 20th, 2026 [January 20th, 2026]
- Machine learning-assisted mapping of VT ablation targets: progress and potential - Hospital Healthcare Europe - January 20th, 2026 [January 20th, 2026]
- Machine Learning Achieves Runtime Optimisation for GEMM with Dynamic Thread Selection - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- Machine learning algorithm predicts Bitcoin price on January 31, 2026 - Finbold - January 20th, 2026 [January 20th, 2026]
- AI and Machine Learning Transform Baldness Detection and Management - Bioengineer.org - January 20th, 2026 [January 20th, 2026]
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]