Adversarial attacks in machine learning: What they are and how to stop them – VentureBeat
Elevate your enterprise data technology and strategy at Transform 2021.
Adversarial machine learning, a technique that attempts to fool models with deceptive data, is a growing threat in the AI and machine learning research community. The most common reason is to cause a malfunction in a machine learning model. An adversarial attack might entail presenting a model with inaccurate or misrepresentative data as its training, or introducing maliciously designed data to deceive an already trained model.
As the U.S. National Security Commission on Artificial Intelligences 2019 interim report notes, a very small percentage of current AI research goes toward defending AI systems against adversarial efforts. Some systems already used in production could be vulnerable to attack. For example, by placing a few small stickers on the ground, researchers showed that they could cause a self-driving car to move into the opposite lane of traffic. Other studies have shown that making imperceptible changes to an image can trick a medical analysis system into classifying a benign mole as malignant, and that pieces of tape can deceive a computer vision system into wrongly classifying a stop signas a speed limit sign.
The increasing adoption of AI is likely to correlate with a rise in adversarial attacks. Its a never-ending arms race, but fortunately, effective approaches exist today to mitigate the worst of the attacks.
Attacks against AI models are often categorized along three primary axes influence on the classifier, the security violation, and their specificity and can be further subcategorized as white box or black box. In white box attacks, the attacker has access to the models parameters, while in black box attacks, the attacker has no access to these parameters.
An attack can influence the classifier i.e., the model by disrupting the model as it makes predictions, while a security violation involves supplying malicious data that gets classified as legitimate. A targeted attack attempts to allow a specific intrusion or disruption, or alternatively to create general mayhem.
Evasion attacks are the most prevalent type of attack, where data are modified to evade detection or to be classified as legitimate. Evasion doesnt involve influence over the data used to train a model, but it is comparable to the way spammers and hackers obfuscate the content of spam emails and malware. An example of evasion is image-based spam in which spam content is embedded within an attached image to evade analysis by anti-spam models. Another example is spoofing attacks against AI-powered biometric verification systems..
Poisoning, another attack type, is adversarial contamination of data. Machine learning systems are often retrained using data collected while theyre in operation, and an attacker can poison this data by injecting malicious samples that subsequently disrupt the retraining process. An adversary might input data during the training phase thats falsely labeled as harmless when its actually malicious. For example, large language models like OpenAIs GPT-3 can reveal sensitive, private information when fed certain words and phrases, research has shown.
Meanwhile, model stealing, also called model extraction, involves an adversary probing a black box machine learning system in order to either reconstruct the model or extract the data that it was trained on. This can cause issues when either the training data or the model itself is sensitive and confidential. For example, model stealing could be used to extract a proprietary stock-trading model, which the adversary could then use for their own financial gain.
Plenty of examples of adversarial attacks have been documented to date. One showed its possible to 3D-print a toy turtle with a texture that causes Googles object detection AI to classify it as a rifle, regardless of the angle from which the turtle is photographed. In another attack, a machine-tweaked image of a dog was shown to look like a cat to both computers and humans. So-called adversarial patterns on glasses or clothing have been designed to deceive facial recognition systems and license plate readers. And researchers have created adversarial audio inputs to disguise commands to intelligent assistants in benign-sounding audio.
In apaper published in April, researchers from Google and the University of California at Berkeley demonstrated that even the best forensic classifiers AI systems trained to distinguish between real and synthetic content are susceptible to adversarial attacks. Its a troubling, if not necessarily new, development for organizations attempting to productize fake media detectors, particularly considering the meteoric riseindeepfakecontent online.
One of the most infamous recent examples is Microsofts Tay, a Twitter chatbot programmed to learn to participate in conversation through interactions with other users. While Microsofts intention was that Tay would engage in casual and playful conversation, internet trolls noticed the system had insufficient filters and began feeding Tay profane and offensive tweets. The more these users engaged, the more offensive Tays tweets became, forcing Microsoft to shut the bot down just 16 hours after its launch.
As VentureBeat contributor Ben Dickson notes, recent years have seen a surge in the amount of research on adversarial attacks. In 2014, there were zero papers on adversarial machine learning submitted to the preprint server Arxiv.org, while in 2020, around 1,100 papers on adversarial examples and attacks were. Adversarial attacks and defense methods have also become a highlight of prominent conferences including NeurIPS, ICLR, DEF CON, Black Hat, and Usenix.
With the rise in interest in adversarial attacks and techniques to combat them, startups like Resistant AI are coming to the fore with products that ostensibly harden algorithms against adversaries. Beyond these new commercial solutions, emerging research holds promise for enterprises looking to invest in defenses against adversarial attacks.
One way to test machine learning models for robustness is with whats called a trojan attack, which involves modifying a model to respond to input triggers that cause it to infer an incorrect response. In an attempt to make these tests more repeatable and scalable, researchers at Johns Hopkins University developed a framework dubbed TrojAI, a set of tools that generate triggered data sets and associated models with trojans. They say that itll enable researchers to understand the effects of various data set configurations on the generated trojaned models and help to comprehensively test new trojan detection methods to harden models.
The Johns Hopkins team is far from the only one tackling the challenge of adversarial attacks in machine learning. In February, Google researchers released apaper describing a framework that either detects attacks or pressures the attackers to produce images that resemble the target class of images. Baidu, Microsoft, IBM, and Salesforce offer toolboxes Advbox, Counterfit, Adversarial Robustness Toolbox, and Robustness Gym for generating adversarial examples that can fool models in frameworks like MxNet, Keras, Facebooks PyTorch and Caffe2, Googles TensorFlow, and Baidus PaddlePaddle. And MITs Computer Science and Artificial Intelligence Laboratory recently released a tool called TextFoolerthat generates adversarial text to strengthen natural language models.
More recently, Microsoft, the nonprofit Mitre Corporation, and 11 organizations including IBM, Nvidia, Airbus, and Bosch releasedtheAdversarial ML Threat Matrix, an industry-focused open framework designed to help security analysts to detect, respond to, and remediate threats against machine learning systems. Microsoft says it worked with Mitre to build a schema that organizes the approaches malicious actors employ in subverting machine learning models, bolstering monitoring strategies around organizations mission-critical systems.
The future might bring outside-the-box approaches, including several inspired by neuroscience. For example, researchers at MIT and MIT-IBM Watson AI Lab have found that directly mapping the features of the mammalian visual cortex onto deep neural networks creates AI systems that are more robust to adversarial attacks. While adversarial AI is likely to become a never-ending arms race, these sorts of solutions instill hope that attackers wont always have the upper hand and that biological intelligence still has a lot of untapped potential.
Read more from the original source:
Adversarial attacks in machine learning: What they are and how to stop them - VentureBeat
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]