A secure approach to generative AI with AWS | Amazon Web Services – AWS Blog
Generative artificial intelligence (AI) is transforming the customer experience in industries across the globe. Customers are building generative AI applications using large language models (LLMs) and other foundation models (FMs), which enhance customer experiences, transform operations, improve employee productivity, and create new revenue channels.
FMs and the applications built around them represent extremely valuable investments for our customers. Theyre often used with highly sensitive business data, like personal data, compliance data, operational data, and financial information, to optimize the models output. The biggest concern we hear from customers as they explore the advantages of generative AI is how to protect their highly sensitive data and investments. Because their data and model weights are incredibly valuable, customers require them to stay protected, secure, and private, whether thats from their own administrators accounts, their customers, vulnerabilities in software running in their own environments, or even their cloud service provider from having access.
At AWS, our top priority is safeguarding the security and confidentiality of our customers workloads. We think about security across the three layers of our generative AI stack:
Each layer is important to making generative AI pervasive and transformative.
With the AWS Nitro System, we delivered a first-of-its-kind innovation on behalf of our customers. The Nitro System is an unparalleled computing backbone for AWS, with security and performance at its core. Its specialized hardware and associated firmware are designed to enforce restrictions so that nobody, including anyone in AWS, can access your workloads or data running on your Amazon Elastic Compute Cloud (Amazon EC2) instances. Customers have benefited from this confidentiality and isolation from AWS operators on all Nitro-based EC2 instances since 2017.
By design, there is no mechanism for any Amazon employee to access a Nitro EC2 instance that customers use to run their workloads, or to access data that customers send to a machine learning (ML) accelerator or GPU. This protection applies to all Nitro-based instances, including instances with ML accelerators like AWS Inferentia and AWS Trainium, and instances with GPUs like P4, P5, G5, and G6.
The Nitro System enables Elastic Fabric Adapter (EFA), which uses the AWS-built AWS Scalable Reliable Datagram (SRD) communication protocol for cloud-scale elastic and large-scale distributed training, enabling the only always-encrypted Remote Direct Memory Access (RDMA) capable network. All communication through EFA is encrypted with VPC encryption without incurring any performance penalty.
The design of the Nitro System has been validated by the NCC Group, an independent cybersecurity firm. AWS delivers a high level of protection for customer workloads, and we believe this is the level of security and confidentiality that customers should expect from their cloud provider. This level of protection is so critical that weve added it in our AWS Service Terms to provide an additional assurance to all of our customers.
From day one, AWS AI infrastructure and services have had built-in security and privacy features to give you control over your data. As customers move quickly to implement generative AI in their organizations, you need to know that your data is being handled securely across the AI lifecycle, including data preparation, training, and inferencing. The security of model weightsthe parameters that a model learns during training that are critical for its ability to make predictionsis paramount to protecting your data and maintaining model integrity.
This is why it is critical for AWS to continue to innovate on behalf of our customers to raise the bar on security across each layer of the generative AI stack. To do this, we believe that you must have security and confidentiality built in across each layer of the generative AI stack. You need to be able to secure the infrastructure to train LLMs and other FMs, build securely with tools to run LLMs and other FMs, and run applications that use FMs with built-in security and privacy that you can trust.
At AWS, securing AI infrastructure refers to zero access to sensitive AI data, such as AI model weights and data processed with those models, by any unauthorized person, either at the infrastructure operator or at the customer. Its comprised of three key principles:
The Nitro System fulfills the first principle of Secure AI Infrastructure by isolating your AI data from AWS operators. The second principle provides you with a way to remove administrative access of your own users and software to your AI data. AWS not only offers you a way to achieve that, but we also made it straightforward and practical by investing in building an integrated solution between AWS Nitro Enclaves and AWS Key Management Service (AWS KMS). With Nitro Enclaves and AWS KMS, you can encrypt your sensitive AI data using keys that you own and control, store that data in a location of your choice, and securely transfer the encrypted data to an isolated compute environment for inferencing. Throughout this entire process, the sensitive AI data is encrypted and isolated from your own users and software on your EC2 instance, and AWS operators cannot access this data. Use cases that have benefited from this flow include running LLM inferencing in an enclave. Until today, Nitro Enclaves operate only in the CPU, limiting the potential for larger generative AI models and more complex processing.
We announced our plans to extend this Nitro end-to-end encrypted flow to include first-class integration with ML accelerators and GPUs, fulfilling the third principle. You will be able to decrypt and load sensitive AI data into an ML accelerator for processing while providing isolation from your own operators and verified authenticity of the application used for processing the AI data. Through the Nitro System, you can cryptographically validate your applications to AWS KMS and decrypt data only when the necessary checks pass. This enhancement allows AWS to offer end-to-end encryption for your data as it flows through generative AI workloads.
We plan to offer this end-to-end encrypted flow in the upcoming AWS-designed Trainium2 as well as GPU instances based on NVIDIAs upcoming Blackwell architecture, which both offer secure communications between devices, the third principle of Secure AI Infrastructure. AWS and NVIDIA are collaborating closely to bring a joint solution to market, including NVIDIAs new NVIDIA Blackwell GPU platform, which couples NVIDIAs GB200 NVL72 solution with the Nitro System and EFA technologies to provide an industry-leading solution for securely building and deploying next-generation generative AI applications.
Today, tens of thousands of customers are using AWS to experiment and move transformative generative AI applications into production. Generative AI workloads contain highly valuable and sensitive data that needs the level of protection from your own operators and the cloud service provider. Customers using AWS Nitro-based EC2 instances have received this level of protection and isolation from AWS operators since 2017, when we launched our innovative Nitro System.
At AWS, were continuing that innovation as we invest in building performant and accessible capabilities to make it practical for our customers to secure their generative AI workloads across the three layers of the generative AI stack, so that you can focus on what you do best: building and extending the uses of the generative AI to more areas. Learn more here.
Anthony Liguori is an AWS VP and Distinguished Engineer for EC2
Colm MacCrthaigh is an AWS VP and Distinguished Engineer for EC2
Continued here:
A secure approach to generative AI with AWS | Amazon Web Services - AWS Blog
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]