A race it might be impossible to stop: how worried should we be about AI? – The Guardian
Artificial intelligence (AI)
Scientists are warning machine learning will soon outsmart humans maybe its time for us to take note
Last Monday an eminent, elderly British scientist lobbed a grenade into the febrile anthill of researchers and corporations currently obsessed with artificial intelligence or AI (aka, for the most part, a technology called machine learning). The scientist was Geoffrey Hinton, and the bombshell was the news that he was leaving Google, where he had been doing great work on machine learning for the last 10 years, because he wanted to be free to express his fears about where the technology he had played a seminal role in founding was heading.
To say that this was big news would be an epic understatement. The tech industry is a huge, excitable beast that is occasionally prone to outbreaks of irrational exuberance, ie madness. One recent bout of it involved cryptocurrencies and a vision of the future of the internet called Web3, which an astute young blogger and critic, Molly White, memorably describes as an enormous grift thats pouring lighter fluid on our already smoldering planet.
We are currently in the grip of another outbreak of exuberance triggered by Generative AI chatbots, large language models (LLMs) and other exotic artefacts enabled by massive deployment of machine learning which the industry now regards as the future for which it is busily tooling up.
Recently, more than 27,000 people including many who are knowledgeable about the technology became so alarmed about the Gadarene rush under way towards a machine-driven dystopia that they issued an open letter calling for a six-month pause in the development of the technology. Advanced AI could represent a profound change in the history of life on Earth, it said, and should be planned for and managed with commensurate care and resources.
It was a sweet letter, reminiscent of my morning sermon to our cats that they should be kind to small mammals and garden birds. The tech giants, which have a long history of being indifferent to the needs of society, have sniffed a new opportunity for world domination and are not going to let a group of nervous intellectuals stand in their way.
Which is why Hintons intervention was so significant. For he is the guy whose research unlocked the technology that is now loose in the world, for good or ill. And thats a pretty compelling reason to sit up and pay attention.
He is a truly remarkable figure. If there is such a thing as an intellectual pedigree, then Hinton is a thoroughbred.
His father, an entomologist, was a fellow of the Royal Society. His great-great-grandfather was George Boole, the 19th-century mathematician who invented the logic that underpins all digital computing.
His great-grandfather was Charles Howard Hinton, the mathematician and writer whose idea of a fourth dimension became a staple of science fiction and wound up in the Marvel superhero movies of the 2010s. And his cousin, the nuclear physicist Joan Hinton, was one of the few women to work on the wartime Manhattan Project in Los Alamos, which produced the first atomic bomb.
Hinton has been obsessed with artificial intelligence for all his adult life, and particularly in the problem of how to build machines that can learn. An early approach to this was to create a Perceptron a machine that was modelled on the human brain and based on a simplified model of a biological neuron. In 1958 a Cornell professor, Frank Rosenblatt, actually built such a thing, and for a time neural networks were a hot topic in the field.
But in 1969 a devastating critique by two MIT scholars, Marvin Minsky and Seymour Papert, was published and suddenly neural networks became yesterdays story.
Except that one dogged researcher Hinton was convinced that they held the key to machine learning. As New York Times technology reporter Cade Metz puts it, Hinton remained one of the few who believed it would one day fulfil its promise, delivering machines that could not only recognise objects but identify spoken words, understand natural language, carry on a conversation, and maybe even solve problems humans couldnt solve on their own.
In 1986, he and two of his colleagues at the University of Toronto published a landmark paper showing that they had cracked the problem of enabling a neural network to become a constantly improving learner using a mathematical technique called back propagation. And, in a canny move, Hinton christened this approach deep learning, a catchy phrase that journalists could latch on to. (They responded by describing him as the godfather of AI, which is crass even by tabloid standards.)
In 2012, Google paid $44m for the fledgling company he had set up with his colleagues, and Hinton went to work for the technology giant, in the process leading and inspiring a group of researchers doing much of the subsequent path-breaking work that the company has done on machine learning in its internal Google Brain group.
During his time at Google, Hinton was fairly non-committal (at least in public) about the danger that the technology could lead us into a dystopian future. Until very recently, he said, I thought this existential crisis was a long way off. So, I dont really have any regrets over what I did.
But now that he has become a free man again, as it were, hes clearly more worried. In an interview last week, he started to spell out why. At the core of his concern was the fact that the new machines were much better and faster learners than humans. Back propagation may be a much better learning algorithm than what weve got. Thats scary We have digital computers that can learn more things more quickly and they can instantly teach it to each other. Its like if people in the room could instantly transfer into my head what they have in theirs.
Whats even more interesting, though, is the hint that whats really worrying him is the fact that this powerful technology is entirely in the hands of a few huge corporations.
Until last year, Hinton told Metz, the Times journalist who has profiled him, Google acted as a proper steward for the technology, careful not to release something that might cause harm.
But now that Microsoft has augmented its Bing search engine with a chatbot challenging Googles core business Google is racing to deploy the same kind of technology. The tech giants are locked in a competition that might be impossible to stop.
Hes right. Were moving into uncharted territory.
Well, not entirely uncharted. As I read of Hintons move on Monday, what came instantly to mind was a story Richard Rhodes tells in his monumental history The Making of the Atomic Bomb. On 12 September, 1933, the great Hungarian theoretical physicist Leo Szilard was waiting to cross the road at a junction near the British Museum. He had just been reading a report of a speech given the previous day by Ernest Rutherford, in which the great physicist had said that anyone who looked for a source of power in the transformation of the atom was talking moonshine.
Szilard suddenly had the idea of a nuclear chain reaction and realised that Rutherford was wrong. As he crossed the street, Rhodes writes, time cracked open before him and he saw a way to the future, death into the world and all our woe, the shape of things to come.
Szilard was the co-author (with Albert Einstein) of the letter to President Roosevelt (about the risk that Hitler might build an atomic bomb) that led to the Manhattan Project, and everything that followed.
John Naughton is an Observer columnist and chairs the advisory board of the Minderoo Centre for Technology and Democracy at Cambridge University.
{{topLeft}}
{{bottomLeft}}
{{topRight}}
{{bottomRight}}
{{.}}
Follow this link:
A race it might be impossible to stop: how worried should we be about AI? - The Guardian
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]