6 ways to reduce different types of bias in machine learning – TechTarget
As companies step up the use of machine learning-enabled systems in their day-to-day operations, they become increasingly reliant on those systems to help them make critical business decisions. In some cases, the machine learning systems operate autonomously, making it especially important that the automated decision-making works as intended.
However, machine learning-based systems are only as good as the data that's used to train them. If there are inherent biases in the data used to feed a machine learning algorithm, the result could be systems that are untrustworthy and potentially harmful.
In this article, you'll learn why bias in AI systems is a cause for concern, how to identify different types of biases and six effective methods for reducing bias in machine learning.
The power of machine learning comes from its ability to learn from data and apply that learning experience to new data the systems have never seen before. However, one of the challenges data scientists have is ensuring that the data that's fed into machine learning algorithms is not only clean, accurate and -- in the case of supervised learning, well-labeled -- but also free of any inherently biased data that can skew machine learning results.
The power of supervised learning, one of the core approaches to machine learning, in particular depends heavily on the quality of the training data. So it should be no surprise that when biased training data is used to teach these systems, the results are biased AI systems. Biased AI systems that are put into implementation can cause problems, especially when used in automated decision-making systems, autonomous operation, or facial recognition software that makes predictions or renders judgment on individuals.
Some notable examples of the bad outcomes caused by algorithmic bias include: a Google image recognition system that misidentified images of minorities in an offensive way; automated credit applications from Goldman Sachs that have sparked an investigation into gender bias; and a racially biased AI program used to sentence criminals. Enterprises must be hyper-vigilant about machine learning bias: Any value delivered by AI and machine learning systems in terms of efficiency or productivity will be wiped out if the algorithms discriminate against individuals and subsets of the population.
However, AI bias is not only limited to discrimination against individuals. Biased data sets can jeopardize business processes when applied to objects and data of all types. For example, take a machine learning model that was trained to recognize wedding dresses. If the model was trained using Western data, then wedding dresses would be categorized primarily by identifying shades of white. This model would fail in non-Western countries where colorful wedding dresses are more commonly accepted. Errors also abound where data sets have bias in terms of the time of day when data was collected, the condition of the data and other factors.
All of the examples described above represent some sort of bias that was introduced by humans as part of their data selection and identification methods for training the machine learning model. Because the systems technologists build are necessarily colored by their own experiences, they must be very aware that their individual biases can jeopardize the quality of the training data. Individual bias, in turn, can easily become a systemic bias as bad predictions and unfair outcomes are automated.
Part of the challenge of identifying bias is due to the difficulty of seeing how some machine learning algorithms generalize their learning from the training data. In particular, deep learning algorithms have proven to be remarkably powerful in their capabilities. This approach to neural networks leverages large quantities of data, high performance compute power and a sophisticated approach to efficiency, resulting in machine learning models with profound abilities.
Deep learning, however, is a "black box." It's not clear how an individual decision was arrived at by the neural network predictive model. You can't simply query the system and determine with precision which inputs resulted in which outputs. This makes it hard to spot and eliminate potential biases when they arise in the results. Researchers are increasingly turning their focus on adding explainability to neural networks. Verification is the process of proving the properties of neural networks. However, because of the size of neural networks, it can be hard to check them for bias.
Until we have truly explainable systems, we must understand how to recognize and measure AI bias in machine learning models. Some of the biases in the data sets arise from the selection of training data sets. The model needs to represent the data as it exists in the real world. If your data set is artificially constrained to a subset of the population, you will get skewed results in the real world, even if it performs very well against training data. Likewise, data scientists must take care in how they select which data to include in a training data set and which features or dimensions are included in the data for machine learning training.
Companies are combating inherent data bias by implementing programs to not only broaden the diversity of their data sets, but also the diversity of their teams. More diversity on teams means that people of many perspectives and varied experiences are feeding systems the data points to learn from. Unfortunately, the tech industry today is very homogeneous; there are not many women or people of color in the field. Efforts to diversify teams should also have a positive impact on the machine learning models produced, since data science teams will be better able to understand the requirements for more representative data sets.
There are a few sources for the bias that can have an adverse impact on machine learning models. Some of these are represented in the data that is collected and others in the methods used to sample, aggregate, filter and enhance that data.
There are no doubt other types of bias that might be represented in the data set than just the ones listed above, and all those forms should be identified early in the machine learning project.
1. Identify potential sources of bias. Using the above sources of bias as a guide, one way to address and mitigate bias is to examine the data and see how the different forms of bias could impact the data being used to train the machine learning model. Have you selected the data without bias? Have you made sure there isn't any bias arising from errors in data capture or observation? Are you making sure not to use an historic data set tainted with prejudice or confirmation bias? By asking these questions you can help to identify and potentially eliminate that bias.
2. Set guidelines and rules for eliminating bias and procedures. To keep bias in check, organizations should set guidelines, rules and procedures for identifying, communicating and mitigating potential data set bias. Forward-thinking organizations are documenting cases of bias as they occur, outlining the steps taken to identify bias, and explaining the efforts taken to mitigate bias. By establishing these rules and communicating them in an open, transparent manner, organizations can put the right foot forward to address issues of machine learning model bias.
3. Identify accurate representative data. Prior to collecting and aggregating data for machine learning model training, organizations should first try to understand what a representative data set should look like. Data scientists should use their data analysis skills to understand the nature of the population that is to be modeled along with the characteristics of the data used to create the machine learning model. These two things should match in order to build a data set with as little bias as possible.
4. Document and share how data is selected and cleansed. Many forms of bias occur when selecting data from among large data sets and during data cleansing operations. In order to make sure few bias-inducing mistakes are made, organizations should document their methods of data selection and cleansing and allow others to examine when and if the models exhibit any form of bias. Transparency allows for root-cause analysis of sources of bias to be eliminated in future model iterations.
5. Evaluate model for performance and select least-biased, in addition to performance. Machine learning models are often evaluated prior to being placed into operation. Most of the time these evaluation steps focus on aspects of model accuracy and precision. Organizations should also add measures of bias detection in their model evaluation steps. Even if the model performs with certain levels of accuracy and precision for particular tasks, it could fail on measures of bias, which might point to issues with the training data.
6. Monitor and review models in operation. Finally, there is a difference between how the machine learning model performs in training and how it performs in the real world. Organizations should provide methods to monitor and continuously review the models as they perform in operation. If there are signs that certain forms of bias are showing up in the results, then the organization can take action before the bias causes irreparable harm.
When bias becomes embedded in machine learning models, it can have an adverse impact on our daily lives. The bias is exhibited in the form of exclusion, such as certain groups being denied loans or not being able to use the technology, or in the technology not working the same for everyone. As AI continues to become more a part of our lives, the risks from bias only grow larger. Companies, researchers and developers have a responsibility to minimize bias in AI systems. A lot of it comes down to ensuring that the data sets are representative and that the interpretation of data sets is correctly understood. However, just making sure that the data sets aren't biased won't actually remove bias, so having diverse teams of people working toward the development of AI remains an important goal for enterprises.
More:
6 ways to reduce different types of bias in machine learning - TechTarget
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]