6 sustainability measures of MLops and how to address them – VentureBeat
We are excited to bring Transform 2022 back in-person July 19 and virtually July 20 - 28. Join AI and data leaders for insightful talks and exciting networking opportunities. Register today!
Artificial intelligence (AI) adoption keeps growing. According to a McKinsey survey, 56% of companies are now using AI in at least one function, up from 50% in 2020. A PwC survey found that the pandemic accelerated AI uptake and that 86% of companies say AI is becoming a mainstream technology in their company.
In the last few years, significant advances in open-source AI, such as the groundbreaking TensorFlow framework, have opened AI up to a broad audience and made the technology more accessible. Relatively frictionless use of the new technology has led to greatly accelerated adoption and an explosion of new applications. Tesla Autopilot, Amazon Alexa and other familiar use cases have both captured our imaginations and stirred controversy, but AI is finding applications in almost every aspect of our world.
Historically, machine learning (ML) the pathway to AI was reserved for academics and specialists with the necessary mathematical skills to develop complex algorithms and models. Today, the data scientists working on these projects need both the necessary knowledge and the right tools to be able to effectively productize their machine learning models for consumption at scale which can often be a hugely complicated task involving sophisticated infrastructure and multiple steps in ML workflows.
Another key piece is model lifecycle management (MLM), which manages the complex AI pipeline and helps ensure results. The proprietary enterprise MLM systems of the past were expensive, however, and yet often lagged far behind the latest technological advances in AI.
Effectively filling that operational capability gap is critical to the long-term success of AI programs because training models that give good predictions is just a small part of the overall challenge. Building ML systems that bring value to an organization is more than this. Rather than the ship-and-forget pattern typical of traditional software, an effective strategy requires regular iteration cycles with continuous monitoring, care and improvement.
Enter MLops (machine learning operations), which enables data scientists, engineering and IT operations teams to work together collaboratively to deploy ML models into production, manage them at scale and continuously monitor their performance.
MLops typically aims to address six key challenges around taking AI applications into production. These are: repeatability, availability, maintainability, quality, scalability and consistency.
Further, MLops can help simplify AI consumption so that applications can make use of machine learning models for inference (i.e., to make predictions based on data) in a scalable, maintainable manner. This capability is, after all, the primary value that AI initiatives are supposed to deliver. To dive deeper:
Repeatability is the process thatensuresthe ML modelwillrun successfully in a repeatable manner.
Availability means the ML model is deployed in a way that it is sufficiently available to be able to provide inference services to consuming applications and offer an appropriate level of service.
Maintainabilityrefers tothe processes thatenablethe ML modelto remainmaintainable on a long-term basis; for example, when retraining the model becomes necessary.
Quality: the ML model is continuously monitored to ensure it delivers predictions of tolerable quality.
Scalability means both the scalability of inference services and of the people and processes that are required to retrain the ML model when required.
Consistency: A consistent approach to ML is essential to ensuring success on the other noted measures above.
We can think of MLops as a natural extension of agile devops applied to AI and ML. Typically MLops covers the major aspects of the machine learning lifecycle data preprocessing (ingesting, analyzing and preparing data and making sure that the data is suitably aligned for the model to be trained on), model development, model training and validation, and finally, deployment.
The following six proven MLops techniques can measurably improve the efficacy of AI initiatives, in terms of time to market, outcomes and long-term sustainability.
ML pipelines typically consist of multiple steps, often orchestrated in a directed acyclic graph (DAG) that coordinates the flow of training data as well as the generation and delivery of trained ML models.
The steps within an ML pipeline can be complex. For instance, a step for fetching data in itself may require multiple subtasks to gather datasets, perform checks and execute transformations. For example data may need to be extracted from a variety of source systems perhaps data marts in a corporate data warehouse, web scraping, geospatial stores and APIs. The extracted data may then need to undergo quality and integrity checks using sampling techniques and might need to be adapted in various ways like dropping data points that are not required, aggregations such as summarizing or windowing of other data points, and so on.
Transforming the data into a format that can be used to train the machine learning ML model a process called feature engineering may benefit from additional alignment steps.
Training and testing models often require a grid search to find optimal hyperparameters, where multiple experiments are conducted in parallel until the best set of hyperparameters is identified.
Storing models requires an effective approach to versioning and a way to capture associated metadata and metrics about the model.
MLops platforms like Kubeflow, an open-source machine learning toolkit that runs on Kubernetes, translate the complex steps that compose a data science workflow into jobs that run inside Docker containers on Kubernetes, providing a cloud-native, yet platform-agnostic, interface for the component steps of ML pipelines.
Once the appropriate trained and validated model has been selected, the model needs to be deployed to a production environment where live data is available in order to produce predictions.
And theres good news here the model-as-a-service architecture has made this aspect of ML significantly easier. This approach separates the application from the model through an API, further simplifying processes such as model versioning, redeployment and reuse.
A number of open-source technologies are available that can wrap an ML model and expose inference APIs; for example, KServe and Seldon Core, which are open-source platforms for deploying ML models on Kubernetes.
Its crucial to be able to retrain and redeploy ML models in an automated fashion when significant model drift is detected.
Within the cloud-native world, KNative offers a powerful open-source platform for building serverless applications and can be used to trigger MLops pipelines running on Kubeflow or another open-source job scheduler, such as Apache Airflow.
With solutions like Seldon Core, it can be useful to create an ML deployment with two predictors e.g., allocating 90% of the traffic to the existing (champion) predictor and 10% to the new (challenger) predictor. The MLops team can then (ideally automatically) observe the quality of the predictions. Once proven, the deployment can be updated to move all traffic over to the new predictor. If, on the other hand, the new predictor is seen to perform worse than the existing predictor, 100% of the traffic can be moved back to the old predictor instead.
When production data changes over time, model performance can veer off from the baseline because of substantial variations in the new data versus the data used in training and validating the model. This can significantly harm prediction quality.
Drift detectors like Seldon Alibi Detect can be used to automatically assess model performance over time and trigger a model retrain process and automatic redeployment.
These are databases optimized for ML. Feature stores allow data scientists and data engineers to reuse and collaborate on datasets that have been prepared for machine learning so-called features. Preparing features can be a lot of work, and by sharing access to prepared feature datasets within data science teams, time to market can be greatly accelerated, whilst improving overall machine learning model quality and consistency. FEAST is one such open-source feature store that describes itself as the fastest path to operationalizing analytic data for model training and online inference.
By embracing the MLops paradigm for their data lab and approaching AI with the six sustainability measures in mind repeatability, availability, maintainability, quality, scalability and consistency organizations and departments can measurably improve data team productivity, AI project long-term success and continue to effectively retain their competitive edge.
Rob Gibbon is product manager for data platform and MLops at Canonical the publishers of Ubuntu.
Welcome to the VentureBeat community!
DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.
If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.
You might even considercontributing an articleof your own!
Read More From DataDecisionMakers
More here:
6 sustainability measures of MLops and how to address them - VentureBeat
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]