4 Ways AI, Analytics and Machine Learning Are Improving Customer Service and Support – CMSWire
Many of todays marketing processes are powered by AI and machine learning. Discover how these technologies are shaping the future of customer experience.
By using artificial intelligence (AI) and machine learning (ML) along with analytics, brands are in a much better position to elevate customer service experiences at every touchpoint and create positive emotional connections.
This article will look at the ways that AI and ML are used by brands to improve customer service and support.
AI improves the customer service journey in several ways, including tracking conversations in real-time, providing feedback to service agents and using intelligence to monitor language, speech patterns and psychographic profiles to predict future customer needs.
This functionality can also drastically enhance the effectiveness of customer relationship management (CRM) and customer data platforms (CDP).
CRM platforms, including C2CRM, Salesforce Einstein and Zoho, have integrated AI into their software to provide real-time decisioning, predictive analysis and conversational assistants, all of which help brands more fully understand and engage their customers.
CDPs, such as Amperity, BlueConic, Adobes Real-Time CDP and ActionIQ, have also integrated AI into more traditional capabilities to unify customer data and provide real-time functionality and decisoning. This technology enables brands to gain a deeper understanding of what their customers want, how they feel and what they are most likely to do next.
Related Article: What's Next for Artificial Intelligence in Customer Experience?
Artificial intelligence and machine learning are now used for gathering and analyzing social, historical and behavioral data, which allows brands to gain a much more complete understanding of their customers.
Because AI continuously learns and improves from the data it analyzes, it can anticipate customer behavior. As such, AI- and ML-driven chatbots can provide customers with a more personalized, informed conversation that can easily answer their questions and if not, immediately route them to a live customer service agent.
Bill Schwaab, VP of sales, North America for boost.ai, told CMSWire that ML is used in combination with AI and a number of other deep learning models to support todays virtual customer service agents.
ML on its own may not be sufficient to gain a total understanding of customer requests, but its useful in classifying basic user intent, said Schwaab, who believes that the brightest applications of these technologies in customer service find the balance between AI and human intervention.
Virtual agents are becoming the first line in customer experience in addition to human agents, he explained. Because these virtual agents can resolve service queries quickly and are available outside of normal service hours, human agents can focus on more complex or valuable customer interactions. Round-the-clock availability provides brands with additional time to capture customer input and inform better decision-making.
Swapnil Jain, CEO and co-founder of Observe.AI, said that todays customer service agents no longer have to spend as much time on simpler, transactional interactions, as digital and self-serve options have reduced the volume of those tasks.
"Instead, agents must excel at higher-value, complex behaviors that meaningfully impact CX and revenue," said Jain, adding that brands are harnessing AI and ML to up-level agent skills, which include empathy and active listening. This, in turn, "drives the behavioral changes needed to improve CX performance at speed and scale."
Because customer conversations contain a goldmine of insights for improving agent performance, AI-powered conversation intelligence can help brands with everything from service and support to sales and retention, said Jain. Using advanced interaction analytics, brands can benefit from pinpointing positive and negative CX drivers, advanced tonality-based sentiment and intent analysis and evidence-based agent coaching.
Predictive analytics is the process of using statistics, data mining and modeling to make predictions.
AI can analyze large amounts of data in a very short time, and along with predictive analytics, it can produce real-time, actionable insights that can guide interactions between a customer and a brand. This practice is also referred to as predictive engagement and uses AI to inform a brand when and how to interact with each customer.
Don Kaye, CCO of Exasol, spoke with CMSWire about the ways brands are using predictive analytics as part of their data strategies that link to their overall business objectives.
Weve seen first-hand how businesses use predictive analytics to better inform their organizations decision-making processes to drive powerful customer experiences that result in brand loyalty and earn consumer trust, said Kaye.
As an example, he told CMSWire that banks use supervised learning or regression and classification to calculate the risks of loan defaults or IT departments to detect spam.
With retailers, weve seen them seeking the benefits of deep learning or reinforcement learning, which enables a new level of end-to-end automation, where models become more adaptable and use larger data volumes for increased accuracy, he said.
According to Kaye, businesses with advanced analytics also tend to have agile, open data architectures that promote open access to data, also known as data democratization.
Kaye is a big advocate for AI and ML and believes that the technologies will continue to grow and become routine across all verticals, with the democratization of analytics enabling data professionals to focus on more complex scenarios and making customer experience personalization the norm.
Related Article: What Customer-Centric Predictive Analytics Looks Like
AI-driven sentiment analysis enables brands to obtain actionable insights which facilitate a better understanding of the emotions that customers feel when they encounter pain points or friction along the customer journey as well as how they feel when they have positive, emotionally satisfying experiences.
Julien Salinas, founder and CTO at NLP Cloud, told CMSWire that AI is often used to perform sentiment analysis to automatically detect whether an incoming customer support request is urgent or not. "If the detected sentiment is negative, the ticket is more likely to be addressed quickly by the support team."
Sentiment analysis can automatically detect emotions and opinions by classifying customer text as positive, negative or neutral through the use of AI, natural language processing (NLP) and ML.
Pieter Buteneers, director of engineering in ML and AI at Sinch, said that NLP enables applications to understand, write and speak languages in a manner that is similar to humans.
"It also facilitates a deeper understanding of customer sentiment, he explained. When NLP is incorporated into chatbots and voice bots it permits them to have seemingly human-like language proficiency and adjust their tones during conversations.
When used in conjunction with chatbots, NLP can facilitate human-like conversations based on sentiment. So if a customer is upset, for example, the bot can adjust its tone to diffuse the situation while moving along the conversation, said Buteneers. This would be an intuitive shift for a human, but bots that arent equipped with NLP sentiment analysis could miss the subtle cues of human sentiment in the conversation, and risk damaging the customer relationship."
Buteneers added that breakthroughs in NLP are making an enormous difference in how AI understands input from humans. For example, NLP can be used to perform textual sentiment analysis, which can decipher the polarity of sentiments in text."
Similar to sentiment analysis, AI is also useful for detecting intent. Salinas said that its sometimes difficult to have a quick grasp on a user request, especially when the users message is very long. In that case, AI can automatically extract the main idea from the message so the support agent can act more quickly.
While AI and ML have continued to evolve, and brands have found many ways to use these technologies to improve the customer service experience, the challenges of AI and ML can still be daunting.
Kaye explained that AI models need good data to deliver accurate results, so brands must also focus on quality and governance.
In-memory analytics databases will become the driver of creation, storage and loading features in ML training tools given their analysis capabilities, and ability to scale and deliver optimal time to insight, said Kaye. He added that these tools will benefit from closer integration with the companys data stores, which will enable them to run more effectively on larger data volumes to guarantee greater system scalability.
Iliya Rybchin, partner at Elixirr Consulting, told CMSWire that thanks to ML and the vast amount of data bots are collecting, they are getting better and will continue to improve. The challenge is that they will improve in proportion to the data they receive.
Therefore, if an under-represented minority with a unique dialect is not utilizing a particular service as much as other consumers, the ML will start to discount the aspects of that dialect as outliers vs. common language, said Rybchin.
He explained that the issue is not caused by the technology or programming, but rather, it is the result of the consumer-facing product that is not providing equal access to the bot. The solution is more about bringing more consumers to the product vs. changing how the product is built or designed."
AI and ML have been incorporated into the latest generations of CDP and CRM platforms, and conversational AI-driven bots are assisting service agents and enhancing and improving the customer service experience. Predictive analytics and sentiment analysis, meanwhile, are enabling brands to obtain actionable insights that guide the subsequent interactions between a customer and a brand.
Here is the original post:
4 Ways AI, Analytics and Machine Learning Are Improving Customer Service and Support - CMSWire
- How banks are responsibly embedding machine learning and GenAI into AML surveillance - Compliance Week - January 20th, 2026 [January 20th, 2026]
- Enhancing Teaching and Learning of Vocational Skills through Machine Learning and Cognitive Training (MCT) - Amrita Vishwa Vidyapeetham - January 20th, 2026 [January 20th, 2026]
- New Research in Annals of Oncology Shows Machine Learning Revelation of Global Cancer Trend Drivers - Oncodaily - January 20th, 2026 [January 20th, 2026]
- Machine learning-assisted mapping of VT ablation targets: progress and potential - Hospital Healthcare Europe - January 20th, 2026 [January 20th, 2026]
- Machine Learning Achieves Runtime Optimisation for GEMM with Dynamic Thread Selection - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- Machine learning algorithm predicts Bitcoin price on January 31, 2026 - Finbold - January 20th, 2026 [January 20th, 2026]
- AI and Machine Learning Transform Baldness Detection and Management - Bioengineer.org - January 20th, 2026 [January 20th, 2026]
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]