3 questions to ask before investing in machine learning for pop health – Healthcare IT News
The goal of population health is to use data to identify those who will benefit from intervention sooner, typically in an effort to prevent unnecessary hospital admissions. Machine learning introduces the potential of moving population health away from one-size-fits-all risk scores and toward matching individuals to specific interventions.
The combination of the two has enormous potential. However, many of the factors that will determine success or failure have nothing to do with technology and should be considered before investing in machine learning or population health.
Population health software, with or without machine learning, only produces suggestions. Getting a team to take action, particularly if that action is different, is one of the hardest things to do in healthcare. You will not succeed without executive support. Executives will not support you without significant incentive to do so.
Here's an easy surrogate for whether there is enough of that incentive: whether those executives jobs are in jeopardy if too many people go to the hospital. If not, the likelihood that an investment will lead to measurable improvement is minimal.
If youve been ordered to "do" population health, your best bet is to install a low cost risk score or have your team write a query to identify the oldest sickest people with the most readmissions. Either will return the same results more or less and your team of care managers are used to ignoring said results without rocking the boat. If there is sufficient incentive, read on.
Henry Ford is credited with saying, "If I asked people what they wanted, they would have said faster horses." Its human nature to try to apply a new technology in an old way.
Economists have named this the IT Productivity Paradox and have studied the cost of applying new technical capabilities in old ways. There are signs that healthcare organizations are unknowingly walking this plank.
For decades, risk scores were designed to identify the costliest patients with little consideration of the types of costs, the diseases they suffer, whether or not those costs are preventable, etc.
As a result, according to a systematic review of 30 risk stratification algorithms appearing in the Journal of the American Medical Association, "most current readmission risk prediction models that were designed for either comparative or clinical purposes perform poorly." A recently published study in Science also showed that prioritizing based on cost discriminates against people of color. Applying more data and better math to solve the problem in the old way is an expensive way to propagate existing shortcomings.
The opportunity now made possible is the ability to match individuals to interventions. Patients with serious mental illness that are most likely to have an inpatient psychiatric admission are very different than those with serious illnesses that might benefit from home-based palliative care. Clinicians wouldnt treat them the same, neither should our approach to prioritization.
However, you will need to design for this and clinical teams should be prepared for the repercussions. Patients identified with rising risk (as opposed to peak utilization) will not seem as sick.
Clinical teams trained to triage may feel like theyre not doing their jobs if the patients arent as obviously acute. Its important to discuss these repercussions and prepare in advance of the introduction of new technology.
Using technology to send more of the right people into a program that doesnt have an impact only adds to the cost of an already failing program. Surprisingly, very few programs have ever measured the impact of their interventions.
Those that have, often rely on measuring patients before and after they enter into care management programs which is misleading and biased on many levels.
If you are not confident that the existing program makes a difference, invest in measuring and improving the existing programs performance before investing additional resources. A good read on the pros and cons of different approaches to measuring impact is here.
Starting with a program of measurement can create a culture of measurement, improvement, and accountability - a great foundation for a pop health effort. Involving the clinical team in the definition of measures that matter will go a long way.
Another important consideration is whether your intervention is costly to deliver. The more costly it is to steer resources toward the wrong people, the more likely your program is to benefit from smarter prioritization.
For both reasons above if your program is entirely telephonic and targets older people with chronic complex diseases, you may want to invest in program design and measurement before investing in stratification technology.
Youre in great shape, and your odds of success are exponentially higher. Youre also better informed, as you and the team shift focus to decisions such as whether to build versus partner, what unique data you collect that can be used to your advantage and how youll measure algorithm and program performance.
Leonard DAvolio, PhD is an assistant professor at Harvard Medical School and Brigham and Womens Hospital, and the CEO and founder of Cyft. He shares his work on LinkedIn and Twitter.
See the original post:
3 questions to ask before investing in machine learning for pop health - Healthcare IT News
- Prefix-RFT: A Unified Machine Learning Framework to blend Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) - MarkTechPost - August 24th, 2025 [August 24th, 2025]
- What machine learning models say about Iterum Therapeutics plc - Weekly Risk Report & Fast Exit Strategy with Risk Control - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Putnam Municipal Opportunities Trust recovery - Insider Selling & Weekly Return Optimization Plans - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Viking Therapeutics Inc. recovery - Quarterly Profit Report & Fast Entry and Exit Trade Plans - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Tectonic Financial Inc. recovery - 2025 Historical Comparison & Risk Adjusted Buy and Sell Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Cowen Inc. Preferred Security - 2025 Performance Recap & Reliable Volume Spike Trade Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Milestone Pharmaceuticals Inc. recovery - July 2025 Movers & Breakout Confirmation Trade Signals - Newser - August 24th, 2025 [August 24th, 2025]
- What machine learning models say about FIGS - Weekly Trend Recap & Expert Curated Trade Setup Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Daxor Corporation - July 2025 Sentiment & Fast Exit Strategy with Risk Control - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Willis Towers Watson Public Limited Company - 2025 Macro Impact & Free Safe Capital Growth Stock Tips -... - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Sanmina Corporation - Trade Exit Summary & AI Based Buy and Sell Signals - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Runway Growth Finance Corp. - Quarterly Market Summary & Expert Approved Momentum Ideas - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Maywood Acquisition Corp. Debt Equity Composite Units recovery - Market Growth Summary & Weekly Breakout Watchlists... - August 24th, 2025 [August 24th, 2025]
- The Role of AI and Machine Learning in Personalizing Short Video Content - Vocal - August 22nd, 2025 [August 22nd, 2025]
- Optimization and predictive performance of fly ash-based sustainable concrete using integrated multitask deep learning framework with interpretable... - August 22nd, 2025 [August 22nd, 2025]
- Balancing ethics and statistics: machine learning facilitates highly accurate classification of mice according to their trait anxiety with reduced... - August 22nd, 2025 [August 22nd, 2025]
- Researchers use machine learning to predict dengue fever with 80% accuracy - Northeastern Global News - August 22nd, 2025 [August 22nd, 2025]
- Supervised machine learning algorithms for the classification of obesity levels using anthropometric indices derived from bioelectrical impedance... - August 22nd, 2025 [August 22nd, 2025]
- Machine learning aided optoelectric characterization modelling and prediction of the IV parameters of perovskite solar cells with > 90% accuracy -... - August 22nd, 2025 [August 22nd, 2025]
- Improvement of robot learning with combination of decision making and machine learning for water analysis - EurekAlert! - August 22nd, 2025 [August 22nd, 2025]
- Machine learning and SHAP values explain the association between social determinants of health and post-stroke depression - BMC Public Health - August 22nd, 2025 [August 22nd, 2025]
- Systematic selection of best performing mathematical models for in vitro gas production using machine learning across diverse feeds - Nature - August 22nd, 2025 [August 22nd, 2025]
- YouTubes Using Machine Learning to Improve the Look of Your Shorts Clips - Social Media Today - August 20th, 2025 [August 20th, 2025]
- Machine learning based on pangenome-wide association studies reveals the impact of host source on the zoonotic potential of closely related bacterial... - August 20th, 2025 [August 20th, 2025]
- Machine learning model for early diagnosis of breast cancer based on PiRNA expression with CA153 - Nature - August 20th, 2025 [August 20th, 2025]
- Automatic detection of cognitive events using machine learning and understanding models interpretations of human cognition - Nature - August 20th, 2025 [August 20th, 2025]
- Damon Evolves I/O Platform with Advanced Machine Learning for Adaptive Rider Performance - Motor Sports Newswire - August 20th, 2025 [August 20th, 2025]
- Predictive modeling of asthma drug properties using machine learning and topological indices in a MATLAB based QSPR study - Nature - August 20th, 2025 [August 20th, 2025]
- Saturday Citations: A new category of supernovas; neurons beat machine learning; depression and vitiligo - Phys.org - August 18th, 2025 [August 18th, 2025]
- Agentic AI Is The New Vaporware - Machine Learning Week 2025 - August 18th, 2025 [August 18th, 2025]
- ReactorNet based on machine learning framework to identify control rod position for real time monitoring in PWRs - Nature - August 18th, 2025 [August 18th, 2025]
- Low-cost fabrication and comparative evaluation of machine learning algorithms for flexible PDMS-based hexagonal patch antenna - Nature - August 18th, 2025 [August 18th, 2025]
- Digital biomarkers for interstitial glucose prediction in healthy individuals using wearables and machine learning - Nature - August 18th, 2025 [August 18th, 2025]
- Integrative machine learning models predict prostate cancer diagnosis and biochemical recurrence risk: Advancing precision oncology - Nature - August 18th, 2025 [August 18th, 2025]
- Predicting onset of myopic refractive error in children using machine learning on routine pediatric eye examinations only - Nature - August 18th, 2025 [August 18th, 2025]
- Advanced machine learning framework for thyroid cancer epidemiology in Iran through integration of environmental socioeconomic and health system... - August 18th, 2025 [August 18th, 2025]
- Year-round daily wildfire prediction and key factor analysis using machine learning: a case study of Gangwon State, South Korea - Nature - August 18th, 2025 [August 18th, 2025]
- Comparing the effect of pre-anesthesia clonidine and tranexamic acid on intraoperative bleeding volume in rhinoplasty: a machine learning approach -... - August 18th, 2025 [August 18th, 2025]
- Exploring the role of lipid metabolism related genes and immune microenvironment in periodontitis by integrating machine learning and bioinformatics... - August 18th, 2025 [August 18th, 2025]
- From Data to Delivery: Leveraging AI and Machine Learning in Network Planning - Tech Times - August 18th, 2025 [August 18th, 2025]
- Association between the nutritional inflammation index and mortality among patients with sepsis: insights from traditional methods and machine... - August 18th, 2025 [August 18th, 2025]
- C3 AI Selected for Constellation ShortList for Artificial Intelligence and Machine Learning Best-of-Breed Platforms for Q3 2025 - Yahoo Finance - August 14th, 2025 [August 14th, 2025]
- A physicist tackles machine learning black box - The University of Utah - August 14th, 2025 [August 14th, 2025]
- Morgan State University Collaborates with Amazon-Machine Learning University to Bring AI and Machine Learning Education to the Classroom - Morgan... - August 14th, 2025 [August 14th, 2025]
- BEAST-GB model combines machine learning and behavioral science to predict people's decisions - Tech Xplore - August 14th, 2025 [August 14th, 2025]
- Balancing Regulation and Risk of AI and Machine Learning Software in Medical Devices - Infection Control Today - August 14th, 2025 [August 14th, 2025]
- A deep learning model with machine vision system for recognizing type of the food during the food consumption - Nature - August 14th, 2025 [August 14th, 2025]
- Machine learning reveals the mysteries of amorphous alumina thin films at atomic scale - Phys.org - August 14th, 2025 [August 14th, 2025]
- Correction: Machine learning based prediction of cognitive metrics using major biomarkers in SuperAgers - Nature - August 14th, 2025 [August 14th, 2025]
- Transforming Cancer Biomarker Discovery with Machine Learning - the-scientist.com - August 14th, 2025 [August 14th, 2025]
- AI in Precision Agriculture Market Accelerates Adoption of Predictive Analytics and Machine Learning - openPR.com - August 14th, 2025 [August 14th, 2025]
- Improvements from incorporating machine learning algorithms into near real-time operational post-processing - Nature - August 14th, 2025 [August 14th, 2025]
- Data Quality Tools Market Expected to Surge to USD 8.0 Billion by 2033, Driven by AI and Machine Learning Adoption - Vocal - August 12th, 2025 [August 12th, 2025]
- Predicting female football outcomes by machine learning: behavioural analysis of goals as high stress events - Nature - August 12th, 2025 [August 12th, 2025]
- Harnessing Machine Learning and Weak AI to do Smart Things on the Production Floor - AdvancedManufacturing.org - August 12th, 2025 [August 12th, 2025]
- The Role of AI in Predicting Customer Churn Beyond Traditional Metrics - Machine Learning Week 2025 - August 12th, 2025 [August 12th, 2025]
- Towards better earthquake risk assessment with machine learning and geological survey data - Tech Xplore - August 12th, 2025 [August 12th, 2025]
- AI and Machine Learning - Philadelphia calls for climate resilience partners - Smart Cities World - August 12th, 2025 [August 12th, 2025]
- Exploring the Potential of Machine Learning in Optimizing Respiratory Failure Treatment - AJMC - August 9th, 2025 [August 9th, 2025]
- Decoding macrophage immune responses with gene editing and machine learning - News-Medical - August 9th, 2025 [August 9th, 2025]
- Application of causal forest double machine learning (DML) approach to assess tuberculosis preventive therapys impact on ART adherence - Nature - August 9th, 2025 [August 9th, 2025]
- Serum peptide biomarkers by MALDI-TOF MS coupled with machine learning for diagnosis and classification of hepato-pancreato-biliary cancers - Nature - August 9th, 2025 [August 9th, 2025]
- Machine learning based analysis of leucocyte cell population data by Sysmex XN series hematology analyzer for the diagnosis of bacteremia - Nature - August 9th, 2025 [August 9th, 2025]
- Predicting COVID-19 severity in pediatric patients using machine learning: a comparative analysis of algorithms and ensemble methods - Nature - August 9th, 2025 [August 9th, 2025]
- Impact of massive open online courses in higher education using machine learning and decision based fuzzy frank power aggregation operators models -... - August 9th, 2025 [August 9th, 2025]
- Machine learning improves earthquake risk assessment and foundation planning - Open Access Government - August 9th, 2025 [August 9th, 2025]
- How machine learning can tell who with schizophrenia will respond to treatment. - Psychology Today - August 7th, 2025 [August 7th, 2025]
- City Colleges of Chicago and Amazon-MLU bring enhanced Artificial Intelligence and Machine Learning to the colleges faculty - colleges.ccc.edu - August 7th, 2025 [August 7th, 2025]
- Machine learning derived development and validation of extracellular matrix related signature for predicting prognosis in adolescents and young adults... - August 7th, 2025 [August 7th, 2025]
- Alzheimers disease risk prediction using machine learning for survival analysis with a comorbidity-based approach - Nature - August 7th, 2025 [August 7th, 2025]
- Machine learning models highlight environmental and genetic factors associated with the Arabidopsis circadian clock - Nature - August 7th, 2025 [August 7th, 2025]
- AI-derived CT biomarker score for robust COVID-19 mortality prediction across multiple waves and regions using machine learning - Nature - August 7th, 2025 [August 7th, 2025]
- Alcorn State partners with AWS-Machine Learning University to integrate AI in classrooms - WJTV - August 7th, 2025 [August 7th, 2025]
- Why Machine Learning is the Next Big Thing in Diabetes Care and CGM - AZoRobotics - August 7th, 2025 [August 7th, 2025]
- D-Wave launches open-source quantum AI toolkit to accelerate machine learning innovation - Mugglehead Magazine - August 7th, 2025 [August 7th, 2025]
- Machine learning algorithms to predict the risk of admission to intensive care units in HIV-infected individuals: a single-centre study - Virology... - August 6th, 2025 [August 6th, 2025]
- Novel machine learning algorithm could boost detection of familial hypercholesterolemia - Healio - August 6th, 2025 [August 6th, 2025]
- Introducing the Signal and Image Processing and Machine Learning (SIPML) Certificate - University of Michigan - August 6th, 2025 [August 6th, 2025]
- AI to Predict Suicide: The Case for Interpretable Machine Learning - Think Global Health - August 6th, 2025 [August 6th, 2025]
- Machine learning based optimization of titanium electropolishing using artificial neural networks and Taguchi design in eco-friendly electrolytes -... - August 6th, 2025 [August 6th, 2025]