Archive for the ‘Quantum Computing’ Category

What Europe can learn from France when it comes to quantum computing – Sifted

The French ambition to become a world leader in deeptech is one of Europes worst-kept secrets.

Not only does the country have one of the biggest deeptech funds in Europe, Bpifrance,but more importantly it has the people and the pipeline of talent through a best-in-breed university system, which is helping the country become a hotbed for innovation.

Quantum is one segment of deeptech where the French are leaving the rest of Europe, and in fact most other nations, far behind. The ambition to set up a quantum hub in the Paris region, linking large corporations and startups, is truly impressive and far-reaching.

Not only is the region focusing on nurturing homegrown talents, but they are also actively scouting for overseas companies to set up European headquarters in the cluster. How would we know? Well, we were one of the very few UK companies targeted.

France has always been at the forefront of cryptography and has one of the richest ecosystems for quantum pioneers. That history includes individuals ranging from the winners of the Nobel Prize in Physics, Albert Fert and Serge Haroche, to French National Centre for Scientific Research (CNRS) Gold Medallist Alain Aspects pioneering research on quantum entanglement and quantum simulators.

To build on this, earlier this year the French government announced a 1.8bn strategy to boost research in quantum technologies over five years. This will see public investment in the field increase from 60m to 200m a year.

Not only is investment increasing, but the often overlooked part is that funding is being funnelled into various fields of quantum computing.France recognises that quantum computing is not a homogenous industry and that various aspects require attention outside the development of actual quantum computers.

France is building a frameworkto make the country a key player across the entire quantum ecosystem

For example, one such area is security. Once a functioning quantum computer emerges, the cryptography that is used to secure all data and communications will become obsolete overnight.

Compounding this risk is the harvest now, decrypt later threat. Nefarious hackers might intercept data today and then hold onto it until quantum computers are advanced enough to decrypt it. To tackle this, new encryption methods are being developed that can stand against these new powerful computers, also known as post-quantum cryptography (PQC).

Its clear France recognises this threat, with plans to put 150 million directly to R&D in the field of PQC. This is in addition to the 780 million that is being devoted to developing computing alone, and the 870 million that is being set aside for sensor research, quantum communications and other related technologies.

Taken together, France is building a framework for industrial and research forces to make the country a key player across the entire quantum ecosystem, from computing development to post-quantum security.

So how does the rest of Europe compare? The short answer is that its lagging far behind.

Frances closest competitor is Germany, with its government recently pledging to invest 2bn in quantum computing and related technologies over five years. Thats a larger number than Frances commitment but it appears the scope is to only build a competitive quantum computer in five years while growing a network of companies to develop applications.

France is well on its way to protecting itself against the very real security threats quantum computers will pose

Investments by other individual governments across the rest of Europe are minimal, with many relying on the EUs Quantum Technologies Flagship programme to lead the way. However, with $1.1bn earmarked to cover 27 countries, little attention is being placed beyond computing R&D into adjacent fields like quantum security and communications.

Even if we focus on the security side of the coin, France is well on its way to protecting itself against the very real security threats quantum computers will pose, with the rest of Europe leaving themselves vulnerable.

It is also the case that France, in my opinion, is keeping pace with the traditional leaders the US, China and Canada and even pushing ahead in some areas.

While the US, Canadian and Chinese governments have committed impressive amounts to quantum, much of the focus in these countries is on developing a functioning computer, without recognising that a successful quantum strategy needs to be much broader. For example, although it has now developed a broad security roadmap, the US Department of Homeland Securitys budget for next year makes scant reference to quantum computing and the technology that is going to underpin post-quantum security.

If we measure success in quantum by not only how quickly we can develop such computers, but also how effectively they can be applied and how robust our protection is against the darker side of the technology, then Id argue that France has the worlds most balanced and systemic approach.

France is firmly Europes trailblazing nation; the rest of the continent ought to take note.

Andersen Cheng is CEO of Post-Quantum and Nomidio

Visit link:
What Europe can learn from France when it comes to quantum computing - Sifted

Quantum computing breakthrough may help us learn about the earliest moments of the universe – TechRadar

The latest breakthrough in the field of quantum computing could pave the way for complex simulations that tell us about the earliest moments of the universe and more.

A team of researchers from the University of Waterloo, Canada, claims to have performed the first ever simulation of baryons (a highly complex type of subatomic particle) on a quantum computer.

To achieve this goal, the researchers paired a traditional computer with a quantum machine in the cloud, and developed from scratch a quantum algorithm that was resource-efficient enough to allow the system to shoulder the workload.

Until now, computers have only been able to simulate the composite elements of baryons (which are made up of three quarks), but the research paper shows its possible to perform detailed quantum simulations with many baryons.

Although the science is complex, the broad significance is this: scientists will be able to simulate aspects of physics completely out of reach for traditional supercomputers.

According to the researchers, the breakthrough represents a landmark step towards overcoming the limitations of classical computing and allowing the massive potential of quantum computers to be realized.

This is an important step forward - it is the first simulation of baryone on a quantum computer ever, said Christine Muschik, faculty member at the Institute for Quantum Computing (IQC). Instead of smashing particles in an accelerator, a quantum computer may one day allow us to simulate these interactions that we use to study the origins of the universe and so much more.

More specifically, researchers will be able to simulate complex lattice gauge theories, which describe the physics of reality. So-called non-Abelian gauge theories are said to be particularly attractive candidates for quantum simulation, as they relate to the stability of matter in the universe.

While the most powerful traditional computers are able to simulate simple non-Abelian gauge theories, only a quantum computer (as has now been proven) can perform the complex simulations necessary to unpack the inner workings of the universe.

Whats exciting about these results for us is that the theory can be made so much more complicated, added Jinglei Zhang, another researcher at the IQC. We can consider simulating matter at higher densities, which is beyond the capability of classical computers.

The rest is here:
Quantum computing breakthrough may help us learn about the earliest moments of the universe - TechRadar

Atos and NVIDIA to Advance Climate and Healthcare Research With Exascale Computing – HPCwire

Nov. 15, 2021 Atos and NVIDIA today announced the Excellence AI Lab (EXAIL), which brings together scientists and researchers to help advance European computing technologies, education and research.

The labs first research projects will focus on five key areas enabled by advances in high performance computing and AI: climate research, healthcare and genomics, hybridization with quantum computing, edge AI/computer vision and cybersecurity.

Atos will develop an exascale-class BullSequana X supercomputer with NVIDIAs Arm-based Grace CPU, NVIDIAs next-generation GPU, Atos BXI Exascale Interconnect andNVIDIA Quantum-2 InfiniBand networking platform.

Predicting and Addressing Climate Change

In an effort to more accurately predict climate change, researchers from Atos and NVIDIA will run new AI and deep learning models on Europes fastest supercomputer at the Jlich Supercomputing Center. Such giant-scale models can be used to predict the evolution of extreme weather events and their changing behavior due to global warming, and they will benefit greatly from exascale-class computing.

The JUWELS Booster system, based on AtosBullSequana XH2000 platform, with nearly 2.5 exaflops of AI and 3,744NVIDIA A100 Tensor Core GPUsand NVIDIA Quantum InfiniBand networking, will help provide deeper understanding of climate change and more accurate long-term predictions of events, such as hurricanes, extreme precipitation, and heat and cold waves.

Atos is strongly committed to itsdecarbonization objectives, which are to offset all of our residual emissions by 2028 to reach net zero, and to reach the SBTi target to reduce our global carbon emissions under our control and influence by 50 percent by 2025, said Andy Grant, vice president of global sales for HPC, AI and Quantum at Atos. Many leading climate modeling centers, such asMeteo France,DKRZ, KNMI andAEMet, are using our BullSequana supercomputers to run their large weather and climate models, and the current EXAIL announcement is a clear demonstration of our commitment, one year after the creation of ourCenter of Excellence in Weather and Climate Modellingwith ECMWF.

Climate change intensifies and increases the frequency of extreme weather events that disrupt entire regions, costing governments and economies hundreds of billions each year, said Ian Buck, vice president and general manager of Accelerated Computing at NVIDIA. The goal for EXAIL is to advance vital research to address pressing global challenges surrounding climate change.

Accelerating Medical Research With HPC, Quantum and AI

Supercharging medical breakthroughs with computational genomics is revolutionizing drug discovery and healthcare.Atos Life Sciences Center of Excellencehas partnered with 40 leading institutions to leverage HPC, quantum computing and AI to advance medical imaging, genomics and pharmaceuticals. TheNVIDIA Clara healthcare application frameworkprovides supercomputing performance for genomics, healthcare imaging and computational chemistry applications.

EXAIL will harness Atos advanced computing solutions and NVIDIA Clara to help healthcare researchers and providers accelerate drug discovery and design advanced diagnostic solutions using embedded, edge, data center and cloud platforms.

Advancing Quantum Research

Quantum computing holds the potential to solve complex problems in fields like drug discovery, climate research, machine learning, logistics and finance. But much research remains before quantum computers become viable.

AtosQuantum Learning Machine, a quantum software development and simulation appliance for the coming quantum computer era, enables researchers and engineers to develop and experiment with quantum software. It will use NVIDIA GPUs to help dramatically increase the speed and scale of quantum simulations. This will speed the research in quantum algorithms, quantum information science, new quantum processor architectures and hybrid quantum-GPU system architectures.

Accelerating Computer Vision

Using Atos edge appliances, such as itsBullSequana Edgewhich runs onNVIDIA BlueField DPUs, the research teams at EXAIL will work together to accelerate computer vision and 5G wireless infrastructure. Six Atos labs around the world dedicated to computer vision will be equipped with the latestNVIDIA Fleet Command technologyfor secure deployment and management of AI applications across distributed edge infrastructure.

Advancing Zero-Trust Cybersecurity

Furthermore, the EXAIL research teams will develop a new data-center-to-edge, zero-trust cybersecurity platform leveraging theNVIDIA Morpheus open AI framework, as well as new AI models to instantly detect new cybersecurity threats.

About Atos

Atos is a global leader in digital transformation with 107,000 employees and annual revenue of over 11 billion. European number one in cybersecurity, cloud and high performance computing, the Group provides tailored end-to-end solutions for all industries in 71 countries. A pioneer in decarbonization services and products, Atos is committed to a secure and decarbonized digital for its clients. Atos is a SE (Societas Europaea), listed on Euronext Paris and included on the CAC 40 ESG and Next 20 Paris Stock Indexes. Thepurpose of Atosis to help design the future of the information space. Its expertise and services support the development of knowledge, education and research in a multicultural approach and contribute to the development of scientific and technological excellence. Across the world, the Group enables its customers and employees, and members of societies at large to live, work and develop sustainably, in a safe and secure information space.

About NVIDIA

NVIDIAs invention of the GPU in 1999 sparked the growth of the PC gaming market and has redefined modern computer graphics, high performance computing and artificial intelligence. The companys pioneering work in accelerated computing and AI is reshaping trillion-dollar industries, such as transportation, healthcare and manufacturing, and fueling the growth of many others. More information at https://nvidianews.nvidia.com/.

Source: NVIDIA

See more here:
Atos and NVIDIA to Advance Climate and Healthcare Research With Exascale Computing - HPCwire

Creating Dynamic Symmetry in Diamond Crystals To Improve Qubits for Quantum Computing – SciTechDaily

By Matthew Hutson, MIT Department of Nuclear Science and EngineeringNovember 15, 2021

Instrumentation setup in the Quantum Engineering Group at MIT to study dynamical symmetries with qubits in diamond crystals. Credit: Guoqing Wang/MIT

MIT researchers develop a new way to control and measure energy levels in a diamond crystal; could improve qubits in quantum computers.

Physicists and engineers have long been interested in creating new forms of matter, those not typically found in nature. Such materials might find use someday in, for example, novel computer chips. Beyond applications, they also reveal elusive insights about the fundamental workings of the universe. Recent work at MIT both created and characterized new quantum systems demonstrating dynamical symmetry particular kinds of behavior that repeat periodically, like a shape folded and reflected through time.

There are two problems we needed to solve, says Changhao Li, a graduate student in the lab of Paola Cappellaro, a professor of nuclear science and engineering. Li published the work recently in Physical Review Letters, together with Cappellaro and fellow graduate student Guoqing Wang. The first problem was that we needed to engineer such a system. And second, how do we characterize it? How do we observe this symmetry?

Concretely, the quantum system consisted of a diamond crystal about a millimeter across. The crystal contains many imperfections caused by a nitrogen atom next to a gap in the lattice a so-called nitrogen-vacancy center. Just like an electron, each center has a quantum property called a spin, with two discrete energy levels. Because the system is a quantum system, the spins can be found not only in one of the levels, but also in a combination of both energy levels, like Schrodingers theoretical cat, which can be both alive and dead at the same time.

Dynamical symmetries, which play an essential role in physics, are engineered and characterized by a cutting-edge quantum information processing toolkit. Credit: Courtesy of the researchers

The energy level of the system is defined by its Hamiltonian, whose periodic time dependence the researchers engineered via microwave control. The system was said to have dynamical symmetry if its Hamiltonian was the same not only after every time period t but also after, for example, every t/2 or t/3, like folding a piece of paper in half or in thirds so that no part sticks out. Georg Engelhardt, a postdoc at the Beijing Computational Science Research, who was not involved in this work but whose own theoretical work served as a foundation, likens the symmetry to guitar harmonics, in which a string might vibrate at both 100 hertz and 50 Hz.

To induce and observe such dynamical symmetry, the MIT team first initialized the system using a laser pulse. Then they directed various selected frequencies of microwave radiation at it and let it evolve, allowing it to absorb and emit the energy. Whats amazing is that when you add such driving, it can exhibit some very fancy phenomena, Li says. It will have some periodic shake. Finally, they shot another laser pulse at it and measured the visible light that it fluoresced, in order to measure its state. The measurement was only a snapshot, so they repeated the experiment many times to piece together a kind of flip book that characterized its behavior across time.

What is very impressive is that they can show that they have this incredible control over the quantum system, Engelhardt says. Its quite easy to solve the equation, but realizing this in an experiment is quite difficult.

Critically, the researchers observed that the dynamically symmetry of the Hamiltonian the harmonics of the systems energy level dictated which transitions could occur between one state and another. And the novelty of this work, Wang says, is also that we introduce a tool that can be used to characterize any quantum information platform, not just nitrogen-vacancy centers in diamonds. Its broadly applicable. Li notes that their technique is simpler than previous methods, those that require constant laser pulses to drive and measure the systems periodic movement.

One engineering application is in quantum computers, systems that manipulate qubits, bits that can be not only 0 or 1, but a combination of 0 and 1. A diamonds spin can encode one qubit in its two energy levels.

Qubits are delicate: they easily break down into simple bit, a 1 or a 0. Or the qubit might become the wrong combination of 0 and 1. These tools for measuring dynamical symmetries, Engelhardt says, can be used to as a sanity check that your experiment is tuned correctly and with a very high precision. He notes the problem of outside perturbations in quantum computers, which he likens to a de-tuned guitar. By tuning the tension of the strings adjusting the microwave radiation such that the harmonics match some theoretical symmetry requirements, one can be sure that the experiment is perfectly calibrated.

The MIT team already has their sights set on extensions to this work. The next step is to apply our method to more complex systems and study more interesting physics, Li says. They aim for more than two energy levels three, or 10, or more. With more energy levels they can represent more qubits. When you have more qubits, you have more complex symmetries, Li says. And you can characterize them using our method here.

Reference: Observation of Symmetry-Protected Selection Rules in Periodically Driven Quantum Systems by Guoqing Wang, Changhao Li and Paola Cappellaro, 29 September 2021, Physical Review Letters.DOI: 10.1103/PhysRevLett.127.140604

This research was funded, in part, by the National Science Foundation.

Read the original post:
Creating Dynamic Symmetry in Diamond Crystals To Improve Qubits for Quantum Computing - SciTechDaily

IBM Launches Its First Quantum Computing Certification | The Info-Tech Brief – Oakland News Now

https://www.youtube.com/watch?v=dnY1WiHUdzgOakland News Now

video made by the YouTube channel with the logo in the videos upper left hand corner. OaklandNewsNow.com is the original blog post for this type of video-blog content.

The quantum future gets a little closer

via IFTTT

Note from Zennie62Media and OaklandNewsNow.com : this video-blog post demonstrates the full and live operation of the latest updated version of an experimental Zennie62Media , Inc. mobile media video-blogging system network that was launched June 2018. This is a major part of Zennie62Media , Inc.s new and innovative approach to the production of news media. What we call The Third Wave of Media. The uploaded video is from a YouTube channel. When the video is liked by Zennie62 YouTube, then it is automatically uploaded to and formatted automatically at the Oakland News Now site and Zennie62-created and owned social media pages. The overall objective here, on top of our is smartphone-enabled, real-time, on the scene reporting of news, interviews, observations, and happenings anywhere in the World and within seconds and not hours is the use of the existing YouTube social graph on any subject in the World. Now, news is reported with a smartphone and also by promoting current content on YouTube: no heavy and expensive cameras or even a laptop are necessary, or having a camera crew to shoot what is already on YouTube. The secondary objective is faster, and very inexpensive media content news production and distribution. We have found there is a disconnect between post length and time to product and revenue generated. With this, the problem is far less, though by no means solved. Zennie62Media is constantly working to improve the system network coding and seeks interested content and media technology partners.

Oakland News Online Links From Oakland's Only News Aggregator Blog

Originally posted here:
IBM Launches Its First Quantum Computing Certification | The Info-Tech Brief - Oakland News Now